
Chapter 6

Differential Calculus

In this chapter, it is assumed that all linear spaces and flat spaces under
consideration are finite-dimensional.

61 Differentiation of Processes

Let E be a flat space with translation space V. A mapping p : I → E from
some interval I ∈ Sub R to E will be called a process. It is useful to think
of the value p(t) ∈ E as describing the state of some physical system at time
t. In special cases, the mapping p describes the motion of a particle and
p(t) is the place of the particle at time t. The concept of differentiability for
real-valued functions (see Sect.08) extends without difficulty to processes as
follows:

Definition 1: The process p : I → E is said to be differentiable at
t ∈ I if the limit

∂tp := lim
s→0

1

s
(p(t+ s) − p(t)) (61.1)

exists. Its value ∂tp ∈ V is then called the derivative of p at t. We say
that p is differentiable if it is differentiable at all t ∈ I. In that case, the
mapping ∂p : I → V defined by (∂p)(t) := ∂tp for all t ∈ I is called the
derivative of p.

Given n ∈ N
×, we say that p is n times differentiable if ∂np : I → V

can be defined by the recursion

∂1p := ∂p, ∂k+1p := ∂(∂kp) for all k ∈ (n− 1)]. (61.2)

We say that p is of class Cn if it is n times differentiable and ∂np is
continuous. We say that p is of class C∞ if it is of class Cn for all n ∈ N

×.
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As for a real-valued function, it is easily seen that a process p is contin-
uous at t ∈ Dom p if it is differentiable at t. Hence p is continuous if it is
differentiable, but it may also be continuous without being differentiable.

In analogy to (08.34) and (08.35), we also use the notation

p(k) := ∂kp for all k ∈ (n− 1)] (61.3)

when p is an n-times differentiable process, and we use

p• := p(1) = ∂p, p•• := p(2) = ∂2p, p••• := p(3) = ∂3p, (61.4)

if meaningful.
We use the term “process” also for a mapping p : I → D from some

interval I into a subset D of the flat space E . In that case, we use poetic
license and ascribe to p any of the properties defined above if p|E has that
property. Also, we write ∂p instead of ∂(p|E) if p is differentiable, etc. (If D
is included in some flat F , then one can take the direction space of F rather
than all of V as the codomain of ∂p. This ambiguity will usually not cause
any difficulty.)

The following facts are immediate consequences of Def.1, and Prop.5 of
Sect.56 and Prop.6 of Sect.57.

Proposition 1: The process p : I → E is differentiable at t ∈ I if and
only if, for each λ in some basis of V∗, the function λ(p− p(t)) : I → R is
differentiable at t.

The process p is differentiable if and only if, for every flat function a ∈
Flf E, the function a ◦ p is differentiable.

Proposition 2: Let E , E ′ be flat spaces and α : E → E ′ a flat mapping.
If p : I → E is a process that is differentiable at t ∈ I, then α ◦ p : I → E ′
is also differentiable at t ∈ I and

∂t(α ◦ p) = (∇α)(∂tp). (61.5)

If p is differentiable then (61.5) holds for all t ∈ I and we get

∂(α ◦ p) = (∇α)∂p. (61.6)

Let p : I → E and q : I → E ′ be processes having the same domain I.
Then (p, q) : I → E×E ′, defined by value-wise pair formation, (see (04.13))
is another process. It is easily seen that p and q are both differentiable at
t ∈ I if and only if (p, q) is differentiable at t. If this is the case we have

∂t(p, q) = (∂tq, ∂tq). (61.7)
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Both p and q are differentiable if and only if (p, q) is, and, in that case,

∂(p, q) = (∂p, ∂q). (61.8)

Let p and q be processes having the same domain I and the same
codomain E . Since the point-difference (x, y) 7→ x − y is a flat mapping
from E × E into V whose gradient is the vector-difference (u,v) 7→ u − v
from V × V into V we can apply Prop.2 to obtain

Proposition 3: If p : I → E and q : I → E are both differentiable at
t ∈ I, so is the value-wise difference p− q : I → V, and

∂t(p− q) = (∂tp) − (∂tq). (61.9)

If p and q are both differentiable, then (61.9) holds for all t ∈ I and we
get

∂(p− q) = ∂p− ∂q. (61.10)

The following result generalizes the Difference-Quotient Theorem stated
in Sect.08.

Difference-Quotient Theorem: Let p : I → E be a process and let
t1, t2 ∈ I with t1 < t2. If p|[t1,t2] is continuous and if p is differentiable at
each t ∈ ]t1, t2[ then

p(t2) − p(t1)

t2 − t1
∈ CloCxh{∂tp | t ∈ ]t1, t2[}. (61.11)

Proof: Let a ∈ Flf E be given. Then (a ◦ p) |[t1,t2] is continuous and,
by Prop.1, a ◦ p is differentiable at each t ∈ ]t1, t2[. By the elementary
Difference-Quotient Theorem (see Sect.08) we have

(a ◦ p)(t2) − (a ◦ p)(t2)
t2 − t1

∈ {∂t(a ◦ p) | t ∈ ]t1, t2[}.

Using (61.5) and (33.4), we obtain

∇a
(

p(t2) − p(t1)

t2 − t1

)

∈ (∇a)>(S), (61.12)

where
S := {∂tp | t ∈ ]t1, t2[}.

Since (61.12) holds for all a ∈ Flf E we can conclude that b(p(t2)−p(t1)
t2−t1

) ≥ 0
holds for all those b ∈ Flf V that satisfy b>(S) ⊂ P. Using the Half-Space
Intersection Theorem of Sect.54, we obtain the desired result (61.11).

Notes 61

(1) See Note (8) to Sect.08 concerning notations such as ∂tp, ∂p, ∂np, p·, p(n), etc.
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62 Small and Confined Mappings

Let V and V ′ be linear spaces of strictly positive dimension. Consider a
mapping n from a neighborhood of zero in V to a neighborhood of zero in
V ′. If n(0) = 0 and if n is continuous at 0, then we can say, intuitively, that
n(v) approaches 0 in V ′ as v approaches 0 in V. We wish to make precise
the idea that n is small near 0 ∈ V in the sense that n(v) approaches 0 ∈ V ′
faster than v approaches 0 ∈ V.

Definition 1: We say that a mapping n from a neighborhood of 0 in V
to a neighborhood of 0 in V ′ is small near 0 if n(0) = 0 and, for all norms
ν and ν ′ on V and V ′, respectively, we have

lim
u→0

ν ′(n(u))

ν(u)
= 0. (62.1)

The set of all such small mappings will be denoted by Small(V,V ′).
Proposition 1: Let n be a mapping from a neighborhood of 0 in V to a

neighborhood of 0 in V ′. Then the following conditions are equivalent:

(i) n ∈ Small(V,V ′).

(ii) n(0) = 0 and the limit-relation (62.1) holds for some norm ν on V
and some norm ν ′ on V ′.

(iii) For every bounded subset S of V and every N ′ ∈ Nhd0(V ′) there is a
δ ∈ P

× such that

n(sv) ∈ sN ′ for all s ∈ ]−δ, δ[ (62.2)

and all v ∈ S such that sv ∈ Domn.

Proof: (i) ⇒ (ii): This implication is trivial.
(ii) ⇒ (iii): Assume that (ii) is valid. Let N ′ ∈ Nhd0(V ′) and a bounded

subset S of V be given. By Cor.1 to the Cell-Inclusion Theorem of Sect.52,
we can choose b ∈ P

× such that

ν(v) ≤ b for all v ∈ S. (62.3)

By Prop.3 of Sect.53 we can choose ε ∈ P
× such that

εbCe(ν ′) ⊂ N ′. (62.4)

Applying Prop.4 of Sect.57 to the assumption (ii) we obtain δ ∈ P
× such

that, for all u ∈ Domn,

ν ′(n(u)) < εν(u) if 0 < ν(u) < δb. (62.5)
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Now let v ∈ S be given. Then ν(sv) = |s|ν(v) ≤ |s|b < δb for all s ∈ ]−δ, δ[
such that sv ∈ Domn. Therefore, by (62.5), we have

ν ′(n(sv)) < εν(sv) = ε|s|ν(v) ≤ |s|εb
if sv 6= 0, and hence

n(sv) ∈ sεbCe(ν ′)

for all s ∈ ]−δ, δ[ such that sv ∈ Domn. The desired conclusion (62.2) now
follows from (62.4).

(iii) ⇒ (i): Assume that (iii) is valid. Let a norm ν on V, a norm
ν ′ on V ′, and ε ∈ P

× be given. We apply (iii) to the choices S := Ce(ν),
N ′ := εCe(ν ′) and determine δ ∈ P

× such that (62.2) holds. If we put
s := 0 in (62.2) we obtain n(0) = 0. Now let u ∈ Domn be given such that
0 < ν(u) < δ. If we apply (62.2) with the choices s := ν(u) and v := 1

s
u,

we see that n(u) ∈ ν(u)εCe(ν ′), which yields

ν ′(n(u))

ν(u)
< ε.

The assertion follows by applying Prop.4 of Sect.57.
The condition (iii) of Prop.1 states that

lim
s→0

1

s
n(sv) = 0 (62.6)

for all v ∈ V and, roughly, that the limit is approached uniformly as v varies
in an arbitrary bounded set.

We also wish to make precise the intuitive idea that a mapping h from a
neighborhood of 0 in V to a neighborhood of 0 in V ′ is confined near zero in
the sense that h(v) approaches 0 ∈ V ′ not more slowly than v approaches
0 ∈ V.

Definition 2: A mapping h from a neighborhood of 0 in V to a neigh-
borhood of 0 in V ′ is said to be confined near 0 if for every norm ν on V
and every norm ν ′ on V ′ there is N ∈ Nhd0(V) and κ ∈ P

× such that

ν ′(h(u)) ≤ κν(u) for all u ∈ N ∩ Domh. (62.7)

The set of all such confined mappings will be denoted by Conf(V,V ′).
Proposition 2: Let h be a mapping from a neighborhood of 0 in V to a

neighborhood of 0 in V ′. Then the following are equivalent:

(i) h ∈ Conf(V,V ′).
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(ii) There exists a norm ν on V, a norm ν ′ on V ′, a neighborhood N of 0
in V, and κ ∈ P

× such that (62.7) holds.

(iii) For every bounded subset S of V there is δ ∈ P
× and a bounded subset

S ′ of V ′ such that

h(sv) ∈ sS ′ for all s ∈ ]−δ, δ[ (62.8)

and all v ∈ S such that sv ∈ Domh.

Proof: (i) ⇒ (ii): This is trivial.
(ii) ⇒ (iii): Assume that (ii) holds. Let a bounded subset S of V be

given. By Cor.1 to the Cell-Inclusion Theorem of Sect.52, we can choose
b ∈ P

× such that
ν(v) ≤ b for all v ∈ S.

By Prop.3 of Sect.53, we can determine δ ∈ P
× such that δbCe(ν) ⊂ N .

Hence, by (62.7), we have for all u ∈ Domh

ν ′(h(u)) ≤ κν(u) if ν(u) < δb. (62.9)

Now let v ∈ S be given. Then ν(sv) = |s|ν(v) ≤ |s|b < δb for all s ∈ ]−δ, δ[
such that sv ∈ Domh. Therefore, by (62.9) we have

ν ′(h(sv) ≤ κν(sv) = κ|s|ν(v) < |s|κb
and hence

h(sv) ∈ sκbCe(ν ′)

for all s ∈ ]−δ, δ[ such that sv ∈ Domh. If we put S ′ := κbCe(ν ′), we obtain
the desired conclusion (62.8).

(iii) ⇒ (i): Assume that (iii) is valid. Let a norm ν on V and a norm ν ′

on V ′ be given. We apply (iii) to the choice S := Ce(ν) and determine S ′ and
δ ∈ P

× such that (62.8) holds. Since S ′ is bounded, we can apply the Cell-
Inclusion Theorem of Sect.52 and determine κ ∈ P

× such that S ′ ⊂ κCe(ν ′).
We put N := δCe(ν) ∩ Domh, which belongs to Nhd0(V). If we put s := 0
in (62.8) we obtain h(0) = 0, which shows that (62.7) holds for u := 0.
Now let u ∈ N× be given, so that 0 < ν(u) < δ. If we apply (62.8) with the
choices s := ν(u) and v := 1

s
u, we see that

h(u) ∈ ν(u)S ′ ⊂ ν(u)κCe(ν ′),

which yields the assertion (62.7).
The following results are immediate consequences of the definition and

of the properties on linear mappings discussed in Sect.52:
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(I) Value-wise sums and value-wise scalar multiples of mappings that are
small [confined] near zero are again small [confined] near zero.

(II) Every mapping that is small near zero is also confined near zero, i.e.

Small(V,V ′) ⊂ Conf(V,V ′).

(III) If h ∈ Conf(V,V ′), then h(0) = 0 and h is continuous at 0.

(IV) Every linear mapping is confined near zero, i.e.

Lin(V,V ′) ⊂ Conf(V,V ′).

(V) The only linear mapping that is small near zero is the zero-mapping,
i.e.

Lin(V,V ′) ∩ Small(V,V ′) = {0}.

Proposition 3: Let V,V ′,V ′′ be linear spaces and let h ∈
Conf(V,V ′) and k ∈ Conf(V ′,V ′′) be such that Domk = Codh. Then
k ◦ h ∈ Conf(V,V ′′). Moreover, if one of k or h is small near zero so is
k ◦ h.

Proof: Let norms ν, ν ′, ν ′′ on V,V ′,V ′′, respectively, be given. Since h
and k are confined we can find κ, κ′ ∈ P

× and N ∈ Nhd0(V), N ′ ∈ Nhd0(V ′)
such that

ν ′′((k ◦ h)(u) ≤ κ′ν ′(h(u)) ≤ κ′κν(u) (62.10)

for all u ∈ N ∩ Domh such that h(u) ∈ N ′ ∩ Domk, i.e. for all
u ∈ N ∩ h<(N ′ ∩ Domk). Since h is continuous at 0 ∈ V, we have
h<(N ′ ∩ Domk) ∈ Nhd0(V) and hence N ∩ h<(N ′ ∩ Domk) ∈ Nhd0(V).
Thus, (62.7) remains satisfied when we replace h, κ and N by k◦h, κ′κ, and
N ∩ h<(N ′ ∩ Domk), respectively, which shows that k ◦ h ∈ Conf(V,V ′′).

Assume now, that one of k and h, say h, is small. Let ε ∈ P
× be given.

Then we can choose N ∈ Nhd0(V) such that ν ′(h(u)) ≤ κν(u) holds for all
u ∈ N ∩Domh with κ := ε

κ′
. Therefore, (62.10) gives ν ′′((k◦h)(u)) ≤ εν(u)

for all u ∈ N ∩ h<(N ′ ∩ Domk). Since ε ∈ P
× was arbitrary this proves

that

lim
u→0

ν ′′((k ◦ h)(u))

ν(u)
= 0,

i.e. that k ◦ h is small near zero.

Now let E and E ′ be flat spaces with translation spaces V and V ′, respec-
tively.
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Definition 3: Let x ∈ E be given. We say that a mapping σ from a
neighborhood of x ∈ E to a neighborhood of 0 ∈ V ′ is small near x if the
mapping v 7→ σ(x + v) from (Dom σ) − x to Codσ is small near 0. The
set of all such small mappings will be denoted by Smallx(E ,V ′).

We say that a mapping ϕ from a neighborhood of x ∈ E to a neighborhood
of ϕ(x) ∈ E ′ is confined near x if the mapping v 7→ (ϕ(x+v)−ϕ(x)) from
(Domϕ) − x to (Codϕ) − ϕ(x) is confined near zero.

The following characterization is immediate.
Proposition 4: The mapping ϕ is confined near x ∈ E if and only if

for every norm ν on V and every norm ν ′ on V ′ there is N ∈ Nhdx(E) and
κ ∈ P

× such that

ν ′(ϕ(y) − ϕ(x)) ≤ κν(y − x) for all y ∈ N . (62.11)

We now state a few facts that are direct consequences of the definitions,
the results (I)–(V) stated above, and Prop.3:

(VI) Value-wise sums and differences of mappings that are small [confined]
near x are again small [confined] near x. Here, “sum” can mean either
the sum of two vectors or sum of a point and a vector, while “differ-
ence” can mean either the difference of two vectors or the difference
of two points.

(VII) Every σ ∈ Smallx(E ,V ′) is confined near x.

(VIII) If a mapping is confined near x it is continuous at x.

(IX) A flat mapping α : E → E ′ is confined near every x ∈ E .

(X) The only flat mapping β : E → V ′ that is small near some x ∈ E is
the constant 0E→V′ .

(XI) If ϕ is confined near x ∈ E and if ψ is a mapping with Domψ = Codϕ
that is confined near ϕ(x) then ψ ◦ ϕ is confined near x.

(XII) If σ ∈ Smallx(E ,V ′) and h ∈ Conf(V ′,V ′′) with Codσ = Domh, then
h ◦ σ ∈ Smallx(E ,V ′′).

(XIII) If ϕ is confined near x ∈ E and if σ is a mapping with Domσ = Codϕ
that is small near ϕ(x) then σ ◦ ϕ ∈ Smallx(E ,V ′′), where V ′′ is the
linear space for which Codσ ∈ Nhd0(V ′′).

(XIV) An adjustment of a mapping that is small [confined] near x is again
small [confined] near x, provided only that the concept small [confined]
near x remains meaningful after the adjustment.
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Notes 62

(1) In the conventional treatments, the norms ν and ν′ in Defs.1 and 2 are assumed
to be prescribed and fixed. The notation n = o(ν), and the phrase “n is small oh
of ν”, are often used to express the assertion that n ∈ Small(V,V ′). The notation
h = O(ν), and the phrase “h is big oh of ν”, are often used to express the assertion
that h ∈ Conf(V,V ′). I am introducing the terms “small” and “confined” here
for the first time because I believe that the conventional terminology is intolerably
awkward and involves a misuse of the = sign.

63 Gradients, Chain Rule

Let I be an open interval in R. One learns in elementary calculus that if a
function f : I → R is differentiable at a point t ∈ I, then the graph of f has
a tangent at (t, f(t)). This tangent is the graph of a flat function a ∈ Flf(R).
Using poetic license, we refer to this function itself as the tangent to f at
t ∈ I. In this sense, the tangent a is given by a(r) := f(t) + (∂tf)(r− t) for
all r ∈ R.

If we put σ := f − a|I , then σ(r) = f(r) − f(t) − (∂tf)(r − t) for all r ∈ I.

We have lims→0
σ(t+s)
s

= 0, from which it follows that σ ∈ Smallt(R,R).
One can use the existence of a tangent to define differentiability at t. Such
a definition generalizes directly to mappings involving flat spaces.

Let E , E ′ be flat spaces with translation spaces V,V ′, respectively. We
consider a mapping ϕ : D → D′ from an open subset D of E into an open
subset D′ of E ′.

Proposition 1: Given x ∈ D, there can be at most one flat mapping
α : E → E ′ such that the value-wise difference ϕ − α|D : D → V ′ is small
near x.

Proof: If the flat mappings α1, α2 both have this property, then the
value-wise difference (α2 − α1)|D = (ϕ − α1|D) − (ϕ − α2|D) is small near
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x ∈ E . Since α2 − α1 is flat, it follows from (X) and (XIV) of Sect.62 that
α2 − α1 is the zero mapping and hence that α1 = α2.

Definition 1: The mapping ϕ : D → D′ is said to be differentiable
at x ∈ D if there is a flat mapping α : E → E ′ such that

ϕ− α|D ∈ Smallx(E ,V ′). (63.1)

This (unique) flat mapping α is then called the tangent to ϕ at x. The
gradient of ϕ at x is defined to be the gradient of α and is denoted by

∇xϕ := ∇α. (63.2)

We say that ϕ is differentiable if it is differentiable at all x ∈ D. If this
is the case, the mapping

∇ϕ : D → Lin(V,V ′) (63.3)

defined by
(∇ϕ)(x) := ∇xϕ for all x ∈ D (63.4)

is called the gradient of ϕ. We say that ϕ is of class C1 if it is differentiable
and if its gradient ∇ϕ is continuous. We say that ϕ is twice differentiable
if it is differentiable and if its gradient ∇ϕ is also differentiable. The gradient
of ∇ϕ is then called the second gradient of ϕ and is denoted by

∇(2)ϕ := ∇(∇ϕ) : D → Lin(V,Lin(V,V ′)) ∼= Lin2(V2,V ′). (63.5)

We say that ϕ is of class C2 if it is twice differentiable and if ∇(2)ϕ is
continuous.

If the subsets D and D′ are arbitrary, not necessarily open, and if x ∈
IntD, we say that ϕ : D → D′ is differentiable at x if ϕ|EIntD is differentiable
at x and we write ∇xϕ for ∇x(ϕ|EIntD).

The differentiability properties of a mapping ϕ remain unchanged if the
codomain of ϕ is changed to any open subset of E ′ that includes Rngϕ. The
gradient of ϕ remains unaltered. If Rngϕ is included in some flat F ′ in E ′,
one may change the codomain to a subset that is open in F ′. in that case,
the gradient of ϕ at a point x ∈ D must be replaced by the adjustment
∇xϕ|U ′

of ∇xϕ, where U ′ is the direction space of F ′.
The differentiability and the gradient of a mapping at a point depend

only on the values of the mapping near that point. To be more precise, let ϕ1

and ϕ2 be two mappings whose domains are neighborhoods of a given x ∈ E
and whose codomains are open subsets of E ′. Assume that ϕ1 and ϕ2 agree
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on some neighborhood of x, i.e. that ϕ1|E′N = ϕ2|E′N for some N ∈ Nhdx(E).
Then ϕ1 is differentiable at x if and only if ϕ2 is differentiable at x. If this
is the case, we have ∇xϕ1 = ∇xϕ2.

Every flat mapping α : E → E ′ is differentiable. The tangent of α at
every point x ∈ E is α itself. The gradient of α as defined in this section
is the constant (∇α)E→Lin(V,V′) whose value is the gradient ∇α of α in the
sense of Sect.33. The gradient of a linear mapping is the constant whose
value is this linear mapping itself.

In the case when E := V := R and when D := I is an open interval,
differentiability at t ∈ I of a process p : I → D′ in the sense of Def.1 above
reduces to differentiability of p at t in the sense of Def.1 of Sect.1. The
gradient ∇tp ∈ Lin(R,V ′) becomes associated with the derivative ∂tp ∈ V ′
by the natural isomorphism from V ′ to Lin(R,V ′), so that ∇tp = (∂tp)⊗ and
∂tp = (∇tp)1 (see Sect.25). If I is an interval that is not open and if t is an
endpoint of it, then the derivative of p : I → D′ at t, if it exists, cannot be
associated with a gradient.

If ϕ is differentiable at x then it is confined and hence continuous at x.
This follows from the fact that its tangent α, being flat, is confined near x
and that the difference ϕ−α|D, being small near x, is confined near x. The
converse is not true. For example, it is easily seen that the absolute-value
function (t 7→ |t|) : R → R is confined near 0 ∈ R but not differentiable at 0.

The following criterion is immediate from the definition:
Characterization of Gradients: The mapping ϕ : D → D′ is dif-

ferentiable at x ∈ D if and only if there is an L ∈ Lin(V,V ′) such that
n : (D − x) → V, defined by

n(v) := (ϕ(x+ v) − ϕ(x)) − Lv for all v ∈ D − x, (63.6)

is small near 0 in V. If this is the case, then ∇xϕ = L.
Let D,D1,D2 be open subsets of flat spaces E , E1, E2 with translation

spaces V,V1,V2, respectively. The following result follows immediately from
the definitions if we use the term-wise evaluations (04.13) and (14.12).

Proposition 2: The mapping (ϕ1, ϕ2) : D → D1 × D2 is differentiable
at x ∈ D if and only if both ϕ1 and ϕ2 are differentiable at x. If this is the
case, then

∇x(ϕ1, ϕ2) = (∇xϕ1,∇xϕ2) ∈ Lin(V,V1) × Lin(V,V2) ∼= Lin(V,V1 × V2)
(63.7)

General Chain Rule: Let D,D′,D′′ be open subsets of flat spaces
E , E ′, E ′′ with translation spaces V,V ′,V ′′, respectively. If ϕ : D → D′ is



220 CHAPTER 6. DIFFERENTIAL CALCULUS

differentiable at x ∈ D and if ψ : D′ → D′′ is differentiable at ϕ(x), then the
composite ψ ◦ϕ : D → D′′ is differentiable at x. The tangent to the compos-
ite ψ ◦ϕ at x is the composite of the tangent to ϕ at x and the tangent to ψ
at ϕ(x) and we have

∇x(ψ ◦ ϕ) = (∇ϕ(x)ψ)(∇xϕ). (63.8)

If ϕ and ψ are both differentiable, so is ψ ◦ ϕ, and we have

∇(ψ ◦ ϕ) = (∇ψ ◦ ϕ)(∇ϕ), (63.9)

where the product on the right is understood as value-wise composition.

Proof: Let α be the tangent to ϕ at x and β the tangent to ψ at ϕ(x).
Then

σ := ϕ− α|D ∈ Smallx(E ,V ′),

τ := ψ − β|D′ ∈ Smallϕ(x)(E ′,V ′′).

We have

ψ ◦ ϕ = (β + τ ) ◦ (α+ σ)

= β ◦ (α+ σ) + τ ◦ (α+ σ)

= β ◦ α+ (∇β) ◦ σ + τ ◦ (α+ σ)

where domain restriction symbols have been omitted to avoid clutter. It
follows from (VI), (IX), (XII), and (XIII) of Sect.62 that (∇β)◦σ+τ ◦ (α+
σ) ∈ Smallx(E ,V ′′), which means that

ψ ◦ ϕ− β ◦ α ∈ Smallx(E ,V ′′).

If follows that ψ ◦ ϕ is differentiable at x with tangent β ◦ α. The assertion
(63.8) follows from the Chain Rule for Flat Mappings of Sect.33.

Let ϕ : D → E ′ and ψ : D → E ′ both be differentiable at x ∈ D. Then
the value-wise difference ϕ− ψ : D → V ′ is differentiable at x and

∇x(ϕ− ψ) = ∇xϕ−∇xψ. (63.10)

This follows from Prop.2, the fact that the point-difference (x′, y′) 7→ (x′−y′)
is a flat mapping from E ′ × E ′ into V ′, and the General Chain Rule.

When the General Chain Rule is applied to the composite of a vector-
valued mapping with a linear mapping it yields
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Proposition 3: If h : D → V ′ is differentiable at x ∈ D and if L ∈
Lin(V ′,W), where W is some linear space, then Lh : D → W is differentiable
at x ∈ D and

∇x(Lh) = L(∇xh). (63.11)

Using the fact that vector-addition, transpositions of linear mappings,
and the trace operations are all linear operations, we obtain the following
special cases of Prop.3:

(I) Let h : D → V ′ and k : D → V ′ both be differentiable at x ∈ D.
Then the value-wise sum h + k : D → V ′ is differentiable at x and

∇x(h + k) = ∇xh + ∇xk. (63.12)

(II) Let W and Z be linear spaces and let F : D → Lin(W ,Z) be dif-
ferentiable at x. If F⊤ : D → Lin(Z∗,W∗) is defined by value-wise
transposition, then F⊤ is differentiable at x ∈ D and

∇x(F
⊤)v = ((∇xF)v)⊤ for all v ∈ V. (63.13)

In particular, if I is an open interval and if F : I → Lin(W ,Z) is
differentiable, so is F⊤ : I → Lin(Z∗,W∗), and

(F⊤)• = (F•)⊤. (63.14)

(III) Let W be a linear space and let F : D → Lin(W) be differentiable at x.
If trF : D → R is the value-wise trace of F, then trF is differentiable
at x and

(∇x(trF))v = tr((∇xF)v) for all v ∈ V. (63.15)

In particular, if I is an open interval and if F : I → Lin(W) is differ-
entiable, so is trF : I → R, and

(trF)• = tr(F•). (63.16)

We note three special cases of the General Chain Rule: Let I be an
open interval and let D and D′ be open subsets of E and E ′, respectively. If
p : I → D and ϕ : D → D′ are differentiable, so is ϕ ◦ p : I → D′, and

(ϕ ◦ p)• = ((∇ϕ) ◦ p)p•. (63.17)
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If ϕ : D → D′ and f : D′ → R are differentiable, so is f ◦ ϕ : D → R, and

∇(f ◦ ϕ) = (∇ϕ)⊤((∇f) ◦ ϕ) (63.18)

(see (21.3)). If f : D → I and p : I → D′ are differentiable, so is p ◦ f , and

∇(p ◦ f) = (p• ◦ f) ⊗∇f. (63.19)

Notes 63

(1) Other common terms for the concept of “gradient” of Def.1 are “differential”,
“Fréchet differential”, “derivative”, and “Fréchet derivative”. Some authors make
an artificial distinction between “gradient” and “differential”. We cannot use
“derivative” because, for processes, “gradient” and “derivative” are distinct though
related concepts.

(2) The conventional definitions of gradient depend, at first view, on the prescription
of a norm. Many texts never even mention the fact that the gradient is a norm-
invariant concept. In some contexts, as when one deals with genuine Euclidean
spaces, this norm-invariance is perhaps not very important. However, when one
deals with mathematical models for space-time in the theory of relativity, the norm-
invariance is crucial because it shows that the concepts of differential calculus have
a “Lorentz-invariant” meaning.

(3) I am introducing the notation ∇xϕ for the gradient of ϕ at x because the more
conventional notation ∇ϕ(x) suggests, incorrectly, that ∇ϕ(x) is necessarily the
value at x of a gradient-mapping ∇ϕ. In fact, one cannot define the gradient-
mapping ∇ϕ without first having a notation for the gradient at a point (see 63.4).

(4) Other notations for ∇xϕ in the literature are dϕ(x), Dϕ(x), and ϕ′(x).

(5) I conjecture that the “Chain” of “Chain Rule” comes from an old terminology that
used “chaining” (in the sense of “concatenation”) for “composition”. The term
“Composition Rule” would need less explanation, but I retained “Chain Rule”
because it is more traditional and almost as good.

64 Constricted Mappings

In this section, D and D′ denote arbitrary subsets of flat spaces E and E ′
with translation spaces V and V ′, respectively.

Definition 1: We say that the mapping ϕ : D → D′ is constricted if
for every norm ν on V and every norm ν ′ on V ′ there is κ ∈ P

× such that

ν ′(ϕ(y) − ϕ(x)) ≤ κν(y − x) (64.1)
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holds for all x, y ∈ D. The infimum of the set of all κ ∈ P
× for which (64.1)

holds for all x, y ∈ D is called the striction of ϕ relative to ν and ν ′; it is
denoted by str(ϕ; ν, ν ′).

It is clear that

str(ϕ; ν, ν ′) = sup

{

ν ′(ϕ(y) − ϕ(x))

ν(y − x)

∣

∣

∣

∣

x, y ∈ D, x 6= y

}

. (64.2)

Proposition 1: For every mapping ϕ : D → D′, the following are
equivalent:

(i) ϕ is constricted.

(ii) There exist norms ν and ν ′ on V and V ′, respectively, and κ ∈ P
× such

that (64.1) holds for all x, y ∈ D.

(iii) For every bounded subset C of V and every N ′ ∈ Nhd0(V ′) there is
ρ ∈ P

× such that

x− y ∈ sC =⇒ ϕ(x) − ϕ(y) ∈ sρN ′ (64.3)

for all x, y ∈ D and s ∈ P
×.

Proof: (i) ⇒ (ii): This implication is trivial.

(ii) ⇒ (iii): Assume that (ii) holds, and let a bounded subset C of V
and N ′ ∈ Nhd0(V ′) be given. By Cor.1 of the Cell-Inclusion Theorem of
Sect.52, we can choose b ∈ P

× such that

ν(u) ≤ b for all u ∈ C. (64.4)

By Prop.3 of Sect.53, we can choose σ ∈ P
× such that σCe(ν ′) ⊂ N ′. Now

let x, y ∈ D and s ∈ P
× be given and assume that x − y ∈ sC. Then

1
s
(x − y) ∈ C and hence, by (64.4), we have ν(1

s
(x − y)) ≤ b, which gives

ν(x − y) ≤ sb. Using (64.1) we obtain ν ′(ϕ(y) − ϕ(x)) ≤ sκb. If we put
ρ := κb

σ
, this means that

ϕ(y) − ϕ(x) ∈ sρσCe(ν ′) ⊂ sρN ′,

i.e. that (64.3) holds.

(iii) ⇒ (i): Assume that (iii) holds and let a norm ν on V and a norm
ν ′ on V ′ be given. We apply (iii) with the choices C := Bdy Ce(ν) and
N ′ := Ce(ν ′). Let x, y ∈ D with x 6= y be given. If we put s := ν(x − y)
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then x−y ∈ sBdy Ce(ν) and hence, by (64.3), ϕ(x)−ϕ(y) ∈ sρCe(ν ′), which
implies

ν ′(ϕ(x) − ϕ(y)) < sρ = ρν(x− y).

Thus, if we put κ := ρ, then (64.1) holds for all x, y ∈ D.
If D and D′ are open sets and if ϕ : D → D′ is constricted, it is confined

near every x ∈ D, as is evident from Prop.4 of Sect.62. The converse is not
true. For example, one can show that the function f : ]−1, 1[→ R defined
by

f(t) :=

{

t sin(1
t
) if t ∈ ]0, 1[

0 if t ∈ ]−1, 0]

}

(64.5)

is not constricted, but is confined near every t ∈ ]−1, 1[.
Every flat mapping α : E → E ′ is constricted and

str(α; ν, ν ′) = ||∇α||ν,ν′,

where || ||ν,ν′ is the operator norm on Lin(V,V ′) corresponding to ν and ν ′

(see Sect.52).
Constrictedness and strictions remain unaffected by a change of codo-

main. If the domain of a constricted mapping is restricted, then it remains
constricted and the striction of the restriction is less than or equal to the
striction of the original mapping. (Pardon the puns.)

Proposition 2: If ϕ : D → D′ is constricted then it is uniformly
continuous.

Proof: We use condition (iii) of Prop.1. Let N ′ ∈ Nhd0(V ′) be given.
We choose a bounded neighborhood C of 0 in V and determine ρ ∈ P

×

according to (iii). Putting N := 1
ρ
C ∈ Nhd0(V) and s := 1

ρ
, we see that

(64.3) gives

x− y ∈ N =⇒ ϕ(x) − ϕ(y) ∈ N ′ for all x, y ∈ D.

Pitfall: The converse of Prop.2 is not valid. A counterexample is the
square-root function

√
: P → P, which is uniformly continuous but not

constricted. Another counterexample is the function defined by (64.5).
The following result is the most useful criterion for showing that a given

mapping is constricted.
Striction Estimate for Differentiable Mappings: Assume that D

is an open convex subset of E, that ϕ : D → D′ is differentiable and that the
gradient ∇ϕ : D → Lin(V,V ′) has a bounded range. Then ϕ is constricted
and

str(ϕ; ν, ν ′) ≤ sup{||∇zϕ||ν,ν′ | z ∈ D} (64.6)
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for all norms ν, ν ′ on V,V ′, respectively.
Proof: Let x, y ∈ D. Since D is convex, we have tx+ (1 − t)y ∈ D for

all t ∈ [0, 1] and hence we can define a process

p : [0, 1] → D′ by p(t) := ϕ(tx+ (1 − t)y).

By the Chain Rule, p is differentiable at t when t ∈ ]0, 1[ and we have

∂tp = (∇zϕ)(x− y) with z := tx+ (1 − t)y ∈ D.

Applying the Difference-Quotient Theorem of Sect.61 to p, we obtain

ϕ(x) − ϕ(y) = p(1) − p(0) ∈ CloCxh{(∇zϕ)(x− y) | z ∈ D}. (64.7)

If ν, ν ′ are norms on V,V ′ then, by (52.7),

ν ′((∇zϕ)(x− y)) ≤ ||∇zϕ||ν,ν′ν(x− y) (64.8)

for all z ∈ D. To say that ∇ϕ has a bounded range is equivalent, by Cor.1
to the Cell-Inclusion Theorem of Sect.52, to

κ := sup{||∇zϕ||ν,ν′ | z ∈ D} <∞. (64.9)

It follows from (64.8) that ν ′((∇zϕ)(x− y) ≤ κν(x− y) for all z ∈ D, which
can be expressed in the form

(∇zϕ)(x− y) ∈ κν(x− y)Ce(ν ′) for all z ∈ D.

Since the set on the right is closed and convex we get

CloCxh{(∇zϕ)(y − x) | z ∈ D} ⊂ κν(x− y)Ce(ν ′)

and hence, by (64.7), ϕ(x)−ϕ(y) ∈ κν(x−y)Ce(ν ′). This may be expressed
in the form

ν ′(ϕ(x) − ϕ(y)) ≤ κν(x− y).

Since x, y ∈ D were arbitrary it follows that ϕ is constricted. The definition
(64.9) shows that (64.6) holds.

Remark: It is not hard to prove that the inequality in (64.6) is actually
an equality.

Proposition 3: If D is a non-empty open convex set and if ϕ : D → D′
is differentiable with gradient zero, then ϕ is constant.

Proof: Choose norms ν, ν ′ on V,V ′, respectively. The assumption ∇ϕ =
0 gives ||∇zϕ||ν,ν′ = 0 for all z ∈ D. Hence, by (64.6), we have str(ϕ, ν, ν ′) =
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0. Using (64.2), we conclude that ν ′(ϕ(y)−ϕ(x)) = 0 and hence ϕ(x) = ϕ(y)
for all x, y ∈ D.

Remark: In Prop.3, the condition that D be convex can be replaced by
the weaker one that D be “connected”. This means, intuitively, that every
two points in D can be connected by a continuous curve entirely within D.

Proposition 4: Assume that D and D′ are open subsets and that
ϕ : D → D′ is of class C1. Let k be a compact subset of D. For every
norm ν on V, every norm ν ′ on V ′, and every ε ∈ P

× there exists δ ∈ P
×

such that k + δCe(ν) ⊂ D and such that, for every x ∈ k, the function
nx : δCe(ν) → V ′ defined by

nx(v) := ϕ(x+ v) − ϕ(x) − (∇xϕ)v (64.10)

is constricted with
str(nx; ν, ν

′) ≤ ε. (64.11)

Proof: Let a norm ν on V be given. By Prop.6 of Sect.58, we can
obtain δ1 ∈ P

× such that k + δ1Ce(ν) ⊂ D. For each x ∈ k, we define
mx : δ1Ce(ν) → V ′ by

mx(v) := ϕ(x+ v) − ϕ(x) − (∇xϕ)v. (64.12)

Differentiation gives

∇vmx = ∇ϕ(x+ v) −∇ϕ(x) (64.13)

for all x ∈ k and all v ∈ δ1Ce(ν). Since k + δ1Ce(ν) is compact by Prop.6
of Sect.58 and since ∇ϕ is continuous, it follows by the Uniform Continuity
Theorem of Sect.58 that ∇ϕ|

k+δ1Ce(ν) is uniformly continuous. Now let a

norm ν ′ on V ′ and ε ∈ P
× be given. By Prop.4 of Sect.56, we can then

determine δ2 ∈ P
× such that

ν(y − x) < δ2 =⇒ ||∇ϕ(y) −∇ϕ(x)||ν,ν′ < ε

for all x, y ∈ k + δ1Ce(ν). In view of (64.13), it follows that

v ∈ δ2Ce(ν) =⇒ ||∇vmx||ν,ν′ < ε

for all x ∈ k and all v ∈ δ1Ce(ν). If we put δ := min {δ1, δ2} and if we define
nx := mx|δCe(ν) for every x ∈ k, we see that {||∇vnx||ν,ν′ | v ∈ δCe(ν)}
is bounded by ε for all x ∈ k. By (64.12) and the Striction Estimate for
Differentiable Mappings, the desired result follows.
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Definition 2: Let ϕ : D → D be a constricted mapping from a set D
into itself. Then

str(ϕ) := inf{str(ϕ; ν, ν) | ν a norm on V} (64.14)

is called the absolute striction of ϕ. If str(ϕ) < 1 we say that ϕ is a
contraction.

Contraction Fixed Point Theorem: Every contraction has at most
one fixed point and, if its domain is closed and not empty, it has exactly one
fixed point.

Proof: Let ϕ : D → D be a contraction. We choose a norm ν on V such
that κ := str(ϕ; ν, ν) < 1 and hence, by (64.1),

ν(ϕ(x) − ϕ(y)) ≤ κν(x− y) for all x, y ∈ D. (64.15)

If x and y are fixed points of ϕ, so that ϕ(x) = x, ϕ(y) = y, then
(64.15) gives ν(x− y)(1− κ) ≤ 0. Since 1− κ > 0 this is possible only when
ν(x − y) = 0 and hence x = y. Therefore, ϕ can have at most one fixed
point.

We now assume D 6= ∅, choose s0 ∈ D arbitrarily, and define

sn := ϕ◦n(s0) for all n ∈ N
×

(see Sect.03). It follows from (64.15) that

ν(sm+1 − sm) = ν(ϕ(sm) − ϕ(sm−1)) ≤ κν(sm − sm−1)

for all m ∈ N
×. Using induction, one concludes that

ν(sm+1 − sm) ≤ κmν(s1 − s0) for all m ∈ N.

Now, if n ∈ N and r ∈ N, then

sn+r − sn =
∑

k∈r[

(sn+k+1 − sn+k)

and hence

ν(sn+r − sn) ≤
∑

k∈r[

κn+kν(s1 − s0) ≤
κn

1 − κ
ν(s1 − s0).

Since κ < 1, we have lim n→∞ κ
n = 0, and it follows that for every ε ∈ P

×

there is an m ∈ N such that ν(sn+r−sn) < ε whenever n ∈ m+N, r ∈ N. By
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the Basic Convergence Criterion of Sect.55 it follows that s := (sn | n ∈ N)
converges. Since ϕ(sn) = sn+1 for all n ∈ N, we have ϕ ◦ s = (sn+1 | n ∈ N),
which converges to the same limit as s. We put

x := lim s = lim (ϕ ◦ s).

Now assume that D is closed. By Prop.6 of Sect.55 it follows that x ∈ D.
Since ϕ is continuous, we can apply Prop.2 of Sect.56 to conclude that
lim (ϕ ◦ s) = ϕ(lim s), i.e. that ϕ(x) = x.

Notes 64

(1) The traditional terms for “constricted” and “striction” are “Lipschitzian” and
“Lipschitz number (or constant)”, respectively. I am introducing the terms “con-
stricted” and “striction” here because they are much more descriptive.

(2) It turns out that the absolute striction of a lineon coincides with what is often
called its “spectral radius”.

(3) The Contraction Fixed Point Theorem is often called the “Contraction Mapping
Theorem” or the “Banach Fixed Point Theorem”.

65 Partial Gradients, Directional Derivatives

Let E1, E2 be flat spaces with translation spaces V1,V2. As we have seen in
Sect.33, the set-product E := E1 × E2 is then a flat space with translation
space V := V1 × V2. We consider a mapping ϕ : D → D′ from an open
subset D of E into an open subset D′ of a flat space E ′ with translation
space V ′

. Given any x2 ∈ E2, we define (·, x2) : E1 → E according to (04.21),
put

D(·,x2) := (·, x2)
<(D) = {z ∈ E1 | (z, x2) ∈ D}, (65.1)

which is an open subset of E1 because (·, x1) is flat and hence continuous,
and define ϕ(·, x2) : D(·,x2) → D′ according to (04.22). If ϕ(·, x2) is dif-
ferentiable at x1 for all (x1, x2) ∈ D we define the partial 1-gradient
∇(1)ϕ : D → Lin(V1,V ′) of ϕ by

∇(1)ϕ(x1, x2) := ∇x1ϕ(·, x2) for all (x1, x2) ∈ D. (65.2)

In the special case when E1 := R, we have V1 = R, and the partial
1-derivative ϕ,1 : D → V ′, defined by

ϕ,1(t, x2) := (∂ϕ(·, x2))(t) for all (t, x2) ∈ D, (65.3)
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is related to ∇(1)ϕ by ∇(1)ϕ = ϕ,1⊗ and ϕ,1 = (∇(1)ϕ)1 (value-wise).
Similar definitions are employed to define D(x1,·), the mapping

ϕ(x1, ·) : D(x1,·) → D′, the partial 2-gradient ∇(2)ϕ : D → Lin(V2,V ′) and
the partial 2-derivative ϕ,2 : D → V ′.

The following result follows immediately from the definitions.
Proposition 1: If ϕ : D → D′ is differentiable at x := (x1, x2) ∈ D,

then the gradients ∇x1ϕ(·, x2) and ∇x2ϕ(x1, ·) exist and

(∇xϕ)v = (∇x1ϕ(·, x2))v1 + (∇x2ϕ(x1, ·))v2 (65.4)

for all v := (v1,v2) ∈ V.
If ϕ is differentiable, then the partial gradients ∇(1)ϕ and ∇(2)ϕ exist

and we have
∇ϕ = ∇(1)ϕ⊕∇(2)ϕ (65.5)

where the operation ⊕ on the right is understood as value-wise application
of (14.13).

Pitfall: The converse of Prop.1 is not true: A mapping can have
partial gradients without being differentiable. For example, the mapping
ϕ : R × R → R, defined by

ϕ(s, t) :=

{

st
s2+t2

if (s, t) 6= (0, 0)

0 if (s, t) = (0, 0)

}

,

has partial derivatives at (0, 0) since both ϕ(·, 0) and ϕ(0, ·) are equal to the
constant 0. Since ϕ(t, t) = 1

2 for t ∈ R
× but ϕ(0, 0) = 0, it is clear that ϕ is

not even continuous at (0, 0), let alone differentiable.
The second assertion of Prop.1 shows that if ϕ is of class C1, then ∇(1)ϕ

and ∇(2)ϕ exist and are continuous. The converse of this statement is true,
but the proof is highly nontrivial:

Proposition 2: Let E1, E2, E ′ be flat spaces. Let D be an open subset of
E1×E2 and D′ an open subset of E ′. A mapping ϕ : D → D′ is of class C1 if
(and only if) the partial gradients ∇(1)ϕ and ∇(2)ϕ exist and are continuous.

Proof: Let (x1, x2) ∈ D. Since D − (x1, x2) is a neighborhood of (0,0)
in V1 × V2, we may choose M1 ∈ Nhd0(V1) and M2 ∈ Nhd0(V2) such that

M := M1 ×M2 ⊂ (D − (x1, x2)).

We define m : M → V ′ by

m(v1,v2) := ϕ((x1, x2) + (v1,v2)) − ϕ(x1, x2)

− (∇(1)ϕ(x1, x2)v1 + ∇(2)ϕ(x1, x2)v2).
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It suffices to show that m ∈ Small(V1 × V2,V ′), for if this is the case, then
the Characterization of Gradients of Sect.63 tells us that ϕ is differentiable
at (x1, x2) and that its gradient at (x1, x2) is given by (65.4). In addition,
since (x1, x2) ∈ D is arbitrary, we can then conclude that (65.5) holds and,
since both ∇(1)ϕ and ∇(2)ϕ are continuous, that ∇ϕ is continuous.

We note that m := h+k, when h : M → V ′ and k : M → V ′ are defined
by

h(v1,v2) := ϕ(x1, x2 + v2) − ϕ(x1, x2) −∇(2)ϕ(x1, x2)v2,

k(v1,v2) := ϕ(x1 + v1, x2 + v2) − ϕ(x1, x2 + v2) −∇(1)ϕ(x1, x2)v1.

}

(65.6)
The differentiability of ϕ(x1, ·) at x2 insures that h belongs to

Small(V1 × V2,V ′) and it only remains to be shown that k belongs to
Small(V1 × V2,V ′).

We choose norms ν1, ν2, and ν ′ on V1,V2 and V ′, respectively. Let ε ∈
P
× be given. Since ∇(1)ϕ is continuous at (x1, x2), there are open convex

neighborhoods N1 and N2 of 0 in V1 and V2, respectively, such that N1 ⊂
M1, N2 ⊂ M2, and

||∇(1)ϕ((x1, x2) + (v1,v2)) −∇(1)ϕ(x1, x2) ||ν1,ν′ < ε

for all (v1,v2) ∈ N1 ×N2. Noting (65.6), we see that this is equivalent to

||∇v1k(·,v2) ||ν1,ν′ < ε for all v1 ∈ N1, v2 ∈ N2.

Applying the Striction Estimate of Sect.64 to k(·,v2)|N1 , we infer that
str(k(·,v2)|N1 ; ν1, ν

′) ≤ ε. It is clear from (65.6) that k(0,v2) = 0 for
all v2 ∈ N2. Hence we can conclude, in view of (64.1), that

ν ′(k(v1,v2)) ≤ εν1(v1) ≤ εmax {ν1(v1), ν2(v2)} for all v1 ∈ N1, v2 ∈ N2.

Since ε ∈ P
× was arbitrary, it follows that

lim
(v1,v2)→(0,0)

ν ′(k(v1,v2))

max {ν1(v1), ν2(v2)}
= 0,

which, in view of (62.1) and (51.23), shows that k ∈ Small(V1 × V2,V ′) as
required.

Remark: In examining the proof above one observes that one needs
merely the existence of the partial gradients and the continuity of one of
them in order to conclude that the mapping is differentiable.

We now generalize Prop.2 to the case when E :=×(Ei | i ∈ I) is the
set-product of a finite family (Ei | i ∈ I) of flat spaces. This product E is a
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flat space whose translation space is the set-product V :=×(Vi | i ∈ I) of
the translation spaces Vi of the Ei, i ∈ I. Given any x ∈ E and j ∈ I, we
define the mapping (x.j) : Ej → E according to (04.24).

We consider a mapping ϕ : D → D′ from an open subset D of E into an
open subset D′ of E ′. Given any x ∈ D and j ∈ I, we put

D(x.j) := (x.j)<(D) ⊂ Ej (65.7)

and define ϕ(x.j) : D(x.j) → D′ according to (04.25). If ϕ(x.j) is differen-
tiable at xj for all x ∈ D, we define the partial j-gradient ∇(j)ϕ : D →
Lin(Vj ,V ′) of ϕ by ∇(j)ϕ(x) := ∇xj

ϕ(x.j) for all x ∈ D.

In the special case when Ej := R for some j ∈ I, the partial j-
derivative ϕ,j : D → V ′, defined by

ϕ,j(x) := (∂ϕ(x.j))(xj) for all x ∈ D, (65.8)

is related to ∇(j)ϕ by ∇(j)ϕ = ϕ,j⊗ and ϕ,j = (∇(j)ϕ)1.

In the case when I := {1, 2}, these notations and concepts reduce to the
ones explained in the beginning (see (04.21)).

The following result generalizes Prop.1.

Proposition 3: If ϕ : D → D′ is differentiable at x = (xi | i ∈ I) ∈ D,
then the gradients ∇xj

ϕ(x.j) exist for all j ∈ I and

(∇xϕ)v =
∑

j∈I

(∇xj
ϕ(x.j))vj (65.9)

for all v = (vi | i ∈ I) ∈ V.

If ϕ is differentiable, then the partial gradients ∇(j)ϕ exist for all j ∈ I
and we have

∇ϕ =
⊕

j∈I

(∇(j)ϕ), (65.10)

where the operation
⊕

on the right is understood as value-wise application
of (14.18).

In the case when E := R
I , we can put Ei := R for all i ∈ I and (65.10)

reduces to

∇ϕ = lnc(ϕ,i | i∈I), (65.11)

where the value at x ∈ D of the right side is understood to be the linear-
combination mapping of the family (ϕ,i(x) | i ∈ I) in V ′. If moreover, E ′
is also a space of the form E ′ := R

K with some finite index set K, then
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lnc(ϕ,i | i∈I) can be identified with the function which assigns to each x ∈ D
the matrix

(ϕk,i(x) | (k, i) ∈ K × I) ∈ R
K×I ∼= Lin(RI ,RK).

Hence ∇ϕ can be identified with the matrix

∇ϕ = (ϕk,i | (k, i) ∈ K × I). (65.12)

of the partial derivatives ϕk,i : D → R of the component functions. As we
have seen, the mere existence of these partial derivatives is not sufficient
to insure the existence of ∇ϕ. Only if ∇ϕ is known a priori to exist is it
possible to use the identification (65.12).

Using the natural isomorphism between

×(Ei | i ∈ I) and Ej × (×(Ei | i ∈ I \ {j}))

and Prop.2, one easily proves, by induction, the following generalization.

Partial Gradient Theorem: Let I be a finite index set and let Ei, i ∈
I and E ′ be flat spaces. Let D be an open subset of E :=×(Ei | i ∈ I) and
D′ an open subset of E ′. A mapping ϕ : D → D′ is of class C1 if and only
if the partial gradients ∇(i)ϕ exist and are continuous for all i ∈ I.

The following result is an immediate corollary:

Proposition 4: Let I and K be finite index sets and let D and D′ be
open subsets of R

I and R
K , respectively. A mapping ϕ : D → D′ is of

class C1 if and only if the partial derivatives ϕk,i : D → R exist and are
continuous for all k ∈ K and all i ∈ I.

Let E , E ′ be flat spaces with translation spaces V and V ′, respectively.
Let D,D′ be open subsets of E and E ′, respectively, and consider a mapping
ϕ : D → D′. Given any x ∈ D and v ∈ V×, the range of the mapping
(s 7→ (x + sv)) : R → E is a line through x whose direction space is Rv.
Let Sx,v := {s ∈ R | x + sv ∈ D} be the pre-image of D under this
mapping and x + 1Sx,vv : Sx,v → D a corresponding adjustment of the
mapping. Since D is open, Sx,v is an open neighborhood of zero in R and
ϕ ◦ (x + 1Sx,vv) : Sx,v → D′ is a process. The derivative at 0 ∈ R of this
process, if it exists, is called the directional derivative of ϕ at x and is
denoted by

(ddvϕ)(x) := ∂0(ϕ ◦ (x+ 1Sx,vv)) = lim
s→0

ϕ(x+ sv) − ϕ(x)

s
. (65.13)
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If this directional derivative exists for all x ∈ D, it defines a function

ddvϕ : D → V ′

which is called the directional v-derivative of ϕ. The following result is
immediate from the General Chain Rule:

Proposition 5: If ϕ : D → D′ is differentiable at x ∈ D then the
directional v-derivative of ϕ at x exists for all v ∈ V and is given by

(ddvϕ)(x) = (∇xϕ)v. (65.14)

Pitfall: The converse of this Proposition is false. In fact, a mapping
can have directional derivatives in all directions at all points in its domain
without being differentiable. For example, the mapping ϕ : R

2 → R defined
by

ϕ(s, t) :=

{

s2t
s4+t2

if (s, t) 6= (0, 0)

0 if (s, t) = (0, 0)

}

has the directional derivatives

(dd(α,β)ϕ)(0, 0) =

{

α2

β
if β 6= 0

0 if β = 0

}

at (0, 0). Using Prop.4 one easily shows that ϕ|R2\{(0,0)} is of class C1 and
hence, by Prop.5, ϕ has directional derivatives in all directions at all (s, t) ∈
R

2. Nevertheless, since ϕ(s, s2) = 1
2 for all s ∈ R

×, ϕ is not even continuous
at (0, 0), let alone differentiable.

Proposition 6: Let b be a set basis of V. Then ϕ : D → D′ is of class
C1 if and only if the directional b-derivatives ddbϕ : D → V ′ exist and are
continuous for all b ∈ b.

Proof: We choose q ∈ D and define α : R
b → E by

α(λ) := q +
∑

b∈b
λbb for all λ ∈ R

b. Since b is a basis, α is a flat iso-
morphism. If we define D := α<(D) ⊂ R

b and ϕ := ϕ ◦ α|D
D

: D → D′, we
see that the directional b-derivatives of ϕ correspond to the partial deriva-
tives of ϕ. The assertion follows from the Partial Gradient Theorem, applied
to the case when I := b and Ei := R for all i ∈ I.

Combining Prop.5 and Prop.6, we obtain

Proposition 7: Assume that S ∈ SubV spans V. The mapping
ϕ : D → D′ is of class C1 if and only if the directional derivatives ddvϕ :
D → V ′ exist and are continuous for all v ∈ S.
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Notes 65

(1) The notation ∇(i) for the partial i-gradient is introduced here for the first time. I
am not aware of any other notation in the literature.

(2) The notation ϕ,i for the partial i-derivative of ϕ is the only one that occurs fre-
quently in the literature and is not objectionable. Frequently seen notations such
as ∂ϕ/∂xi or ϕxi

for ϕ,i are poison to me because they contain dangling dummies
(see Part D of the Introduction).

(3) Some people use the notation ∇v for the directional derivative ddv. I am intro-
ducing ddv because (by Def.1 of Sect.63) ∇v means something else, namely the
gradient at v.

66 The General Product Rule

The following result shows that bilinear mappings (see Sect.24) are of class
C1 and hence continuous. (They are not uniformly continuous except when
zero.)

Proposition 1: Let V1,V2 and W be linear spaces. Every bi-
linear mapping B : V1 × V2 → W is of class C1 and its gradient
∇B : V1 × V2 → Lin(V1 × V2,W) is the linear mapping given by

∇B(v1,v2) = (B∼v2) ⊕ (Bv1) (66.1)

for all v1 ∈ V1,v2 ∈ V2.

Proof: Since B(v1, ·) = Bv1 : V2 → W (see (24.2)) is linear for each
v1 ∈ V, the partial 2-gradient of B exists and is given by ∇(2)B(v1,v2) =
Bv1 for all (v1,v2) ∈ V1 × V2. It is evident that ∇(2)B : V1 × V2 →
Lin(V2,W) is linear and hence continuous. A similar argument shows that
∇(1)B is given by ∇(1)B(v1,v2) = B∼v2 for all (v1,v2) ∈ V1×V2 and hence
is also linear and continuous. By the Partial Gradient Theorem of Sect.65, it
follows that B is of class C1. The formula (66.1) is a consequence of (65.5).

Let D be an open set in a flat space E with translation space V. If
h1 : D → V1, h2 : D → V2 and B ∈ Lin2(V1 × V2,W) we write

B(h1,h2) := B ◦ (h1,h2) : D → W

so that

B(h1,h2)(x) = B(h1(x),h2(x)) for all x ∈ D.
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The following theorem, which follows directly from Prop.1 and the Gen-
eral Chain Rule of Sect.63, is called “Product Rule” because the term “prod-
uct” is often used for the bilinear forms to which the theorem is applied.

General Product Rule: Let V1,V2 and W be linear spaces and let
B ∈ Lin2(V1 ×V2,W) be given. Let D be an open subset of a flat space and
let mappings h1 : D → V1 and h2 : D → V2 be given. If h1 and h2 are both
differentiable at x ∈ D so is B(h1,h2), and we have

∇xB(h1,h2) = (Bh1(x))∇xh2 + (B∼h2(x))∇xh1. (66.2)

If h1 and h2 are both differentiable [of class C1], so is B(h1,h2), and we
have

∇B(h1,h2) = (Bh1)∇h2 + (B∼h2)∇h1, (66.3)

where the products on the right are understood as value-wise compositions.
We now apply the General Product Rule to special bilinear mappings,

namely to the ordinary product in R and to the four examples given in
Sect.24. In the following list of results D denotes an open subset of a flat
space having V as its translation space; W ,W ′ and W ′′ denote linear spaces.

(I) If f : D → R and g : D → R are differentiable [of class C1], so is the
value-wise product fg : D → R and we have

∇(fg) = f∇g + g∇f. (66.4)

(II) If f : D → R and h : D → W are differentiable [of class C1], so is the
value-wise scalar multiple fh : D → W , and we have

∇(fh) = h⊗∇f + f∇h. (66.5)

(III) If h : D → W and η : D → W∗ are differentiable [of class C1], so is the
function ηh : D → R defined by (ηh)(x) := η(x)h(x) for all x ∈ D,
and we have

∇(ηh) = (∇h)⊤η + (∇η)⊤h. (66.6)

(IV) If F : D → Lin(W ,W ′) and h : D → W are differentiable at x ∈ D, so
is Fh (defined by (Fh)(y) := F(y)h(y) for all y ∈ D) and we have

∇x(Fh)v = ((∇xF)v)h(x) + (F(x)∇xh)v (66.7)

for all v ∈ V. If F and h are differentiable [of class C1], so is Fh and
(66.7) holds for all x ∈ D,v ∈ V.
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(V) If F : D → Lin(W ,W ′) and G : D → Lin(W ′,W ′′) are differentiable
at x ∈ D, so is GF, defined by value-wise composition, and we have

∇x(GF)v = ((∇xG)v)F(x) + G(x)((∇xF)v) (66.8)

for all v ∈ V. If F and G are differentiable [of class C1], so is GF, and
(66.8) holds for all x ∈ D,v ∈ V.

If W is an inner-product space, then W∗ can be identified with W , (see
Sect.41) and (III) reduces to the following result.

(VI) If h,k : D → W are differentiable [of class C1], so is their value-wise
inner product h · k and

∇(h · k) = (∇h)⊤k + (∇k)⊤h. (66.9)

In the case when D reduces to an interval in R, (66.4) becomes
the Product Rule (08.32)2 of elementary calculus. The following for-
mulas apply to differentiable processes f,h, η,F, and G with values in
R,W ,W∗,Lin(W ,W ′), and Lin(W ′,W ′′), respectively:

(fh)• = f•h + fh•, (66.10)

(ηh)• = η•h + ηh•, (66.11)

(Fh)• = F•h + Fh•, (66.12)

(GF)• = G•F + GF•. (66.13)

If h and k are differentiable processes with values in an inner product space,
then

(h · k)• = h• · k + h · k•. (66.14)

Proposition 2: Let W be an inner-product space and let R : D → LinW
be given. If R is differentiable at x ∈ D and if Rng R ⊂ OrthW then

R(x)⊤((∇xR)v) ∈ SkewW for all v ∈ V. (66.15)

Conversely, if R is differentiable, if D is convex, if (66.15) holds for all
x ∈ D, and if R(q) ∈ OrthW for some q ∈ D then Rng R ⊂ OrthW.

Proof: Assume that R is differentiable at x ∈ D. Using (66.8) with the
choice F := R and G := R⊤ we find that

∇x(R
⊤R)v = ((∇xR

⊤)v)R(x) + R⊤(x)((∇xR)v)
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holds for all v ∈ V. By (63.13) we obtain

∇x(R
⊤R)v = W⊤ + W with W := R⊤(x)((∇xR)v) (66.16)

for all v ∈ V. Now, if RngR ⊂ OrthV then R⊤R = 1W is constant (see
Prop.2 of Sect.43). Hence the left side of (66.16) is zero and W must be
skew for all v ∈ V, i.e. (66.15) holds.

Conversely, if (66.15) holds for all x ∈ D, then, by (66.16) ∇x(R
⊤R) = 0

for all x ∈ D. Since D is convex, we can apply Prop.3 of Sect.64 to conclude
that R⊤R must be constant. Hence, if R(q) ∈ OrthW , i.e. if (R⊤R)(q) =
1W , then R⊤R is the constant 1W , i.e. Rng R ⊂ OrthW .

Remark: In the second part of Prop.2, the condition that D be con-
vex can be replaced by the one that D be “connected” as explained in the
Remark after Prop.3 of Sect.64.

Corollary: Let I be an open interval and let R : I → LinW be a
differentiable process. Then RngR ⊂ OrthW if and only if R(t) ∈ OrthW
for some t ∈ I and Rng (R⊤R•) ⊂ SkewW.

The following result shows that quadratic forms (see Sect.27) are of class
C1 and hence continuous.

Proposition 3: Let V be a linear space. Every quadratic form Q : V →
R is of class C1 and its gradient ∇Q : V → V∗ is the linear mapping

∇Q = 2Q , (66.17)

where Q is identified with the symmetric bilinear form Q ∈ Sym2(V2,R) ∼=
Sym(V,V∗) associated with Q (see (27.14)).

Proof: By (27.14), we have

Q(u) = Q (u,u) = (Q (1V ,1V))(u)

for all u ∈ V. Hence, if we apply the General Product Rule with the choices

B := Q and h1 := h2 := 1V , we obtain ∇Q = Q +
∼

Q . Since Q is
symmetric, this reduces to (66.17).

Let V be a linear space. The lineonic nth power pown : LinV → LinV
on the algebra LinV of lineons (see Sect.18) is defined by

pown(L) := Ln for all n ∈ N. (66.18)

The following result is a generalization of the familiar differentiation rule
(ιn)• = nιn−1.
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Proposition 4: For every n ∈ N the lineonic nth power pown on
LinV defined by (66.18) is of class C1 and, for each L ∈ LinV, its gradi-
ent ∇Lpown ∈ Lin(LinV) at L ∈ LinV is given by

(∇Lpown)M =
∑

k∈n]

Lk−1MLn−k for all M ∈ LinV. (66.19)

Proof: For n = 0 the assertion is trivial. For n = 1, we have pow1 =
1LinV and hence ∇Lpow1 = 1LinV for all L ∈ LinV, which is consistent with
(66.19). Also, since ∇pow1 is constant, pow1 is of class C1. Assume, then,
that the assertion is valid for a given n ∈ R. Since pown+1 = pow1pown

holds in terms of value-wise composition, we can apply the result (V) above
to the case when F := pown, G := pow1 in order to conclude that pown+1

is of class C1 and that

(∇Lpown+1)M = ((∇Lpow1)M)pown(L) + pow1(L)((∇Lpown)M)

for all M ∈ LinV. Using (66.18) and (66.19) we get

(∇Lpown+1)M = MLn + L(
∑

k∈n]

Lk−1MLn−k),

which shows that (66.19) remains valid when n is replaced by n + 1. The
desired result follows by induction.

If M commutes with L, then (66.19) reduces to

(∇Lpown)M = (nLn−1)M.

Using Prop.4 and the form (63.17) of the Chain Rule, we obtain

Proposition 5: Let I be an interval and let F : I → LinV be a process. If
F is differentiable [of class C1], so is its value-wise nth power Fn : I → LinV
and we have

(Fn)• =
∑

k∈n]

Fk−1F•Fn−k for all n ∈ N. (66.20)

67 Divergence, Laplacian

In this section, D denotes an open subset of a flat space E with translation
space V, and W denotes a linear space.
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If h : D → V is differentiable at x ∈ D, we can form the trace (see
Sect.26) of the gradient ∇xh ∈ LinV. The result

divxh := tr(∇xh) (67.1)

is called the divergence of h at x. If h is differentiable we can define the
divergence div h : D → R of h by

(div h)(x) := divxh for all x ∈ D. (67.2)

Using the product rule (66.5) and (26.3) we obtain
Proposition 1: Let h : D → V and f : D → R be differentiable. Then

the divergence of fh : D → V is given by

div (fh) = (∇f)h + fdiv h. (67.3)

Consider now a mapping H : D → Lin(V∗,W) that is differentiable
at x ∈ D. For every ω ∈ W∗ we can form the value-wise composite
ωH : D → Lin(V∗,R) = V∗∗ ∼= V (see Sect.22). Since ωH is differen-
tiable at x for every ω ∈ W∗ (see Prop.3 of Sect.63) we may consider the
mapping

(ω 7→ tr(∇x(ωH))) : W∗ → R.

It is clear that this mapping is linear and hence an element of W∗∗ ∼= W .
Definition 1: Let H : D → Lin(V∗,W) be differentiable at x ∈ D. Then

the divergence of H at x is defined to be the (unique) element divxH of
W which satisfies

ω(divxH) = tr(∇x(ωH)) for all ω ∈ W∗. (67.4)

If H is differentiable, then its divergence div H : D → W is defined by

(div H)(x) := divxH for all x ∈ D. (67.5)

In the case when W := R, we also have W∗ ∼= R and Lin(V∗,W) =
V∗∗ ∼= V. Thus, using (67.4) with ω := 1 ∈ R, we see that the definition
just given is consistent with (67.1) and (67.2).

If we replace h and L in Prop.3 of Sect.63 by H and

(K 7→ ωK) ∈ Lin(Lin(V∗,W),V),

respectively, we obtain

∇x(ωH) = ω∇xH for all ω ∈ W∗, (67.6)
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where the right side must be interpreted as the composite of
∇xH ∈ Lin2(V ×V∗,W) with ω ∈ Lin(W ,R). This composite, being an ele-
ment of Lin2(V×V∗,R), must be reinterpreted as an element of LinV via the
identifications Lin2(V × V∗,R) ∼= Lin(V,Lin(V∗,R)) = Lin(V,V∗∗) ∼= LinV
to make (67.6) meaningful. Using (67.6), (67.4), and (67.1) we see that
div H satisfies

ω(divxH) = divx(ωH) = tr(ω∇xH) (67.7)

for all ω ∈ W∗.
The following results generalize Prop.1.
Proposition 2: Let H : D → Lin(V∗,W) and ρ : D → W∗

be differentiable. Then the divergence of the value-wise composite
ρH : D → Lin(V∗,R) ∼= V is given by

div (ρH) = ρdiv H + tr(H⊤∇ρ), (67.8)

where value-wise evaluation and composition are understood.
Proof: Let x ∈ D and v ∈ V be given. Using (66.8) with the choices

G := ρ and F := H we obtain

∇x(ρH)v = ((∇xρ)v)H(x) + ρ(x)((∇xH)v). (67.9)

Since (∇xρ)v ∈ W∗, (21.3) gives

((∇xρ)v)H(x) = (H(x)⊤∇xρ)v.

On the other hand, we have

ρ(x)((∇xH)v) = (ρ(x)(∇xH))v

if we interpret ∇xH on the right as an element of Lin2(V × V∗,W). Hence,
since v ∈ V was arbitrary, (67.9) gives

∇x(ρH) = ρ(x)∇xH + H(x)⊤∇xρ.

Taking the trace, using (67.1), and using (67.7) with ω := ρ(x), we get

divx(ρH) = ρ(x)divxH + tr(H(x)⊤∇xρ).

Since x ∈ D was arbitrary, the desired result (67.8) follows.
Proposition 3: Let h : D → V and k : D → W be differentiable. The

divergence of k ⊗ h : D → Lin(V∗,W), defined by taking the value-wise
tensor product (see Sect.25), is then given by

div (k⊗ h) = (∇k)h + (div h)k. (67.10)
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Proof: By (67.7) we have

ω divx(k⊗ h) = divx(ω(k ⊗ h)) = divx((ω k)h)

for all x ∈ D and all ω ∈ W∗. Hence, by Prop.1,

ω div (k⊗ h) = (∇(ωk))h + (ωk)div h = ω((∇k)h + k div h)

holds for all ω ∈ W∗, and (67.10) follows.
Proposition 4: Let H : D → Lin(V∗,W) and f : D → R be differen-

tiable. The divergence of fH : D → Lin(V∗,W) is then given by

div (fH) = fdiv H + H(∇f). (67.11)

Proof: Let ω ∈ W∗ be given. If we apply Prop.2 to the case when
ρ := fω we obtain

div (ω(fH)) = ω(fdiv H) + tr(H⊤∇(fω)). (67.12)

Using ∇(fω) = ω ⊗ ∇f and using (25.9), (26.3), and (22.3), we obtain
tr(H⊤∇(fω)) = tr(H⊤(ω ⊗∇f)) = ∇f(H⊤ω) = ω(H∇f). Hence (67.12)
and (67.7) yield ω div (fH) = ω(fdiv H + H∇f). Since ω ∈ W∗ was
arbitrary, (67.11) follows.

From now on we assume that E has the structure of a Euclidean space,
so that V becomes an inner-product space and we can use the identification
V∗ ∼= V (see Sect.41). Thus, if k : D → W is twice differentiable, we can
consider the divergence of ∇k : D → Lin(V,W) ∼= Lin(V∗,W).

Definition 2: Let k : D → W be twice differentiable. Then the Lapla-
cian of k is defined to be

∆k := div (∇k). (67.13)

If ∆k = 0, then k is called a harmonic function.
Remark: In the case when E is not a genuine Euclidean space, but one

whose translation space has index 1 (see Sect.47), the term D’Alembertian
or Wave-Operator and the symbol are often used instead of Laplacian and
∆.

The following result is a direct consequence of (66.5) and Props.3 and 4.
Proposition 5: Let k : D → W and f : D → R be twice differentiable.

The Laplacian of fk : D → W is then given by

∆(fk) = (∆f)k + f∆k + 2(∇k)(∇f). (67.14)
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The following result follows directly from the form (63.19) of the Chain
Rule and Prop.3.

Proposition 6: Let I be an open interval and let f : D → I and
g : I → W both be twice differentiable. The Laplacian of g ◦ f : D → W is
then given by

∆(g ◦ f) = (∇f)·2(g•• ◦ f) + (∆f)(g• ◦ f). (67.15)

We now discuss an important application of Prop.6. We consider the
case when f : D → I is given by

f(x) := (x− q)·2 for all x ∈ D, (67.16)

where q ∈ E is given. We wish to solve the following problem: How can D, I
and g : I → W be chosen such that g ◦ f is harmonic?

It follows directly from (67.16) and Prop.3 of Sect.66, applied to Q := sq,
that ∇xf = 2(x−q) for all x ∈ D and that hence (∇f)•2 = 4f . Also, ∇(∇f)
is the constant with value 21V and hence, by (26.9),

∆f = div (∇f) = 2tr1V = 2dimV = 2dim E .

Substitution of these results into (67.15) gives

∆(g ◦ f) = 4f(g•• ◦ f) + 2(dim E)g• ◦ f. (67.17)

Hence, g ◦ f is harmonic if and only if

(2ιg•• + ng•) ◦ f = 0 with n := dim E , (67.18)

where ι is the identity mapping of R, suitably adjusted (see Sect.08). Now,
if we choose I := Rng f , then (67.18) is satisfied if and only if g satisfies the
ordinary differential equation 2ιg•• + ng• = 0. It follows that g must be of
the form

g =

{

aι−( n
2
−1) + b if n 6= 2

a log +b if n = 2

}

, (67.19)

where a,b ∈ W , provided that I is an interval.
If E is a genuine Euclidean space, we may take D := E \ {q} and I :=

Rng f = P
×. We then obtain the harmonic function

h =

{

ar−(n−2) + b if n 6= 2
a(log ◦ r) + b if n = 2

}

, (67.20)

where a,b ∈ W and where r : E \ {q} → P
× is defined by r(x) := |x− q|.
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If the Euclidean space E is not genuine and V is double-signed we have
two possibilities. For all n ∈ N

× we may take D := {x ∈ E | (x −
q)•2 > 0} and I := P

×. If n is even and n 6= 2, we may instead take
D := {x ∈ E | (x− q)•2 < 0} and I := −P

×.

Notes 67

(1) In some of the literature on “Vector Analysis”, the notation ∇• h instead of div h

is used for the divergence of a vector field h, and the notation ∇
2f instead of ∆f

for the Laplacian of a function f . These notations come from a formalistic and
erroneous understanding of the meaning of the symbol ∇ and should be avoided.

68 Local Inversion, Implicit Mappings

In this section, D and D′ denote open subsets of flat spaces E and E ′ with
translation spaces V and V ′

, respectively.
To say that a mapping ϕ : D → D′ is differentiable at x ∈ D means,

roughly, that ϕ may be approximated, near x, by a flat mapping α, the
tangent of ϕ at x. One might expect that if the tangent α is invertible, then
ϕ itself is, in some sense, “locally invertible near x”. To decide whether
this expectation is justified, we must first give a precise meaning to “locally
invertible near x”.

Definition: Let a mapping ϕ : D → D′ be given. We say that ψ is a
local inverse of ϕ if ψ = (ϕ|N ′

N )← for suitable open subsets N = Codψ =
Rngψ and N ′ = Domψ of D and D′, respectively. We say that ψ is a local
inverse of ϕ near x ∈ D if x ∈ Rngψ. We say that ϕ is locally invertible
near x ∈ D if it has some local inverse near x.

To say that ψ is a local inverse of ϕ means that

ψ ◦ ϕ|N ′

N = 1N and ϕ|N ′

N ◦ ψ = 1N ′ (68.1)

for suitable open subsets N = Codψ and N ′

= Domψ of D and D′, respec-
tively.

If ψ1 and ψ2 are local inverses of ϕ and M := (Rngψ1)∩ (Rngψ2), then
ψ1 and ψ2 must agree on ϕ>(M) = ψ<1 (M) = ψ<2 (M), i.e.

ψ1|Mϕ>(M) = ψ2|Mϕ>(M) if M := (Rngψ1) ∩ (Rngψ2). (68.2)

Pitfall: A mapping ϕ : D → D′ may be locally invertible near every
point in D without being invertible, even if it is surjective. In fact, if ψ is a
local inverse of ϕ, ϕ<(Domψ) need not be included in Rngψ.
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For example, the function f : ]−1, 1[×→ ]0, 1[ defined by f(s) := |s| for
all s ∈ ]−1, 1[× is easily seen to be locally invertible, surjective, and even
continuous. The identity function 1]0,1[ of ]0, 1[ is a local inverse of f , and
we have

f<(Dom1]0,1[) = f<( ]0, 1[ ) = ]−1, 1[× 6⊂ ]0, 1[= Rng 1[0,1].

The function h : ]0, 1[ → ]−1, 0[ defined by h(s) = −s for all s ∈ ]0, 1[ is
another local inverse of f .

If dim E ≥ 2, one can even give counter-examples of mappings
ϕ : D → D′ of the type described above for which D is convex (see Sect.74).

The following two results are recorded for later use.
Proposition 1: Assume that ϕ : D → D′ is differentiable at x ∈ D and

locally invertible near x. Then, if some local inverse near x is differentiable
at ϕ(x), so are all others and all have the same gradient, namely (∇xϕ)−1.

Proof: We choose a local inverse ψ1 of ϕ near x such that ψ1 is differ-
entiable at ϕ(x). Applying the Chain Rule to (68.1) gives

(∇ϕ(x)ψ1)(∇xϕ) = 1V and (∇xϕ)(∇ϕ(x)ψ1) = 1V′ ,

which shows that ∇xϕ is invertible and ∇ϕ(x)ψ1 = (∇xϕ)−1.
Let now a local inverse ψ2 of ϕ near x be given. Let M be defined as in

(68.2). Since M is open and since ψ1, being differentiable at x, is continuous
at x, it follows that ϕ>(M) = ψ<1 (M) is a neighborhood of ϕ(x) in E ′. By
(68.2), ψ2 agrees with ψ1 on the neighborhood ϕ>(M) of ϕ(x). Hence ψ2

must also be differentiable at ϕ(x), and ∇ϕ(x)ψ2 = ∇ϕ(x)ψ1 = (∇xϕ)−1.
Proposition 2: Assume that ϕ : D → D′ is continuous and that ψ is a

local inverse of ϕ near x.

(i) If M′ is an open neighborhood of ϕ(x) and M′ ⊂ Domψ, then
ψ>(M′) = ϕ<(M′) ∩ Rngψ is an open neighborhood of x; hence the

adjustment ψ|ψ>(M′)
M′ is again a local inverse of ϕ near x.

(ii) Let G be an open subset of E with x ∈ G. If ψ is continuous at ϕ(x)
then there is an open neighborhood M of x with M ⊂ Rngψ ∩ G such
that ψ<(M) = ϕ>(M) is open; hence the adjustment ψ|M

ψ<(M) is again
a local inverse of ϕ near x.

Proof: Part (i) is an immediate consequence of Prop.3 of Sect.56. To
prove (ii), we observe first that ψ<(Rngψ ∩ G) must be a neighborhood of
ϕ(x) = ψ←(x). We can choose an open subset M′ of ψ<(Rngψ ∩ G) with
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ϕ(x) ∈ M′ (see Sect.53). Application of (i) gives the desired result with
M := ψ>(M′).

Remark: It is in fact true that if ϕ : D → D′ is continuous, then every
local inverse of ϕ is also continuous, but the proof is highly non-trivial and
goes beyond the scope of this presentation. Thus, in Part (ii) of Prop.2, the
requirement that ψ be continuous at ϕ(x) is, in fact, redundant.

Pitfall: The expectation mentioned in the beginning is not justified. A
continuous mapping ϕ : D → D′ can have an invertible tangent at x ∈ D
without being locally invertible near x. An example is the function f : R →
R defined by

f(t) :=

{

2t2 sin
(

1
t

)

+ t if t ∈ R
×

0 if t = 0

}

. (68.3)

It is differentiable and hence continuous. Since f•(0) = 1, the tangent to f at
0 is invertible. However, f is not monotone, let alone locally invertible, near
0, because one can find numbers s arbitrarly close to 0 such that f•(s) < 0.

Let I be an open interval and let f : I → R be a function of class C1.
If the tangent to f at a given t ∈ I is invertible, i.e. if f•(t) 6= 0, one can
easily prove, not only that f is locally invertible near t, but also that it has
a local inverse near t that is of class C1. This result generalizes to mappings
ϕ : D → D′, but the proof is far from easy.

Local Inversion Theorem: Let D and D′ be open subsets of flat spaces,
let ϕ : D → D′ be of class C1 and let x ∈ D be such that the tangent to ϕ at
x is invertible. Then ϕ is locally invertible near x and every local inverse of
ϕ near x is differentiable at ϕ(x).

Moreover, there exists a local inverse ψ of ϕ near x that is of class C1

and satisfies
∇yψ = (∇ψ(y)ϕ)−1 for all y ∈ Domψ. (68.4)

Before proceeding with the proof, we state two important results that
are closely related to the Local Inversion Theorem.

Implicit Mapping Theorem: Let E , E ′, E ′′ be flat spaces, let A be an
open subset of E × E ′ and let ω : A → E ′′ be a mapping of class C1. Let
(xo, yo) ∈ A, zo := ω(xo, yo), and assume that ∇yoω(xo, •) is invertible.
Then there exist an open neighborhood D of xo and a mapping ϕ : D → E ′,
differentiable at xo, such that ϕ(xo) = yo and Gr(ϕ) ⊂ A, and

ω(x, ϕ(x)) = zo for all x ∈ D. (68.5)

Moreover, D and ϕ can be chosen such that ϕ is of class C1 and

∇ϕ(x) = −(∇(2)ω(x, ϕ(x)))−1∇(1)ω(x, ϕ(x)) for all x ∈ D. (68.6)
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Remark: The mapping ϕ is determined implicitly by an equation in
this sense: for any given x ∈ D, ϕ(x) is a solution of the equation

? y ∈ E ′, ω(x, y) = zo. (68.7)

In fact, one can find a neighborhood M of (xo, yo) in E × E ′ such that ϕ(x)
is the only solution of

? y ∈ M(x,•), ω(x, y) = zo, (68.8)

where M(x,•) := {y ∈ E ′ | (x, y) ∈ M}.
Differentiation Theorem for Inversion Mappings: Let V and V ′

be linear spaces of equal dimension. Then the set Lis(V,V ′) of all linear
isomorphorisms from V onto V ′ is a (non-empty) open subset of Lin(V,V ′),
the inversion mapping inv : Lis(V,V ′) → Lin(V ′,V) defined by inv(L) :=
L−1 is of class C1, and its gradient is given by

(∇Linv)M = −L−1ML−1 for all M ∈ Lin(V,V ′). (68.9)

The proof of these three theorems will be given in stages, which will be
designated as lemmas. After a basic preliminary lemma, we will prove a
weak version of the first theorem and then derive from it weak versions of
the other two. The weak version of the last theorem will then be used, like
a bootstrap, to prove the final version of the first theorem; the final versions
of the other two theorems will follow.

Lemma 1: Let V be a linear space, let ν be a norm on V, and put
B := Ce(ν). Let f : B → V be a mapping with f(0) = 0 such that f − 1B⊂V
is constricted with

κ := str(f − 1B⊂V ; ν, ν) < 1. (68.10)

Then the adjustment f |(1−κ)B (see Sect.03) of f has an inverse and this
inverse is confined near 0.

Proof: We will show that for every w ∈ (1 − κ)B, the equation

? z ∈ B, f(z) = w (68.11)

has a unique solution.

To prove uniqueness, suppose that z1, z2 ∈ B are solutions of (68.11) for
a given w ∈ V. We then have

(f − 1B⊂V)(z1) − (f − 1B⊂V)(z2) = z2 − z1
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and hence, by (68.10), ν(z2 − z1) ≤ κν(z2 − z1), which amounts to
(1 − κ)ν(z2 − z1) ≤ 0. This is compatible with κ < 1 only if ν(z1 − z2) = 0
and hence z1 = z2.

To prove existence, we assume that w ∈ (1 − κ)B is given and we put

α := ν(w)
1−κ , so that α ∈ [0, 1[. For every v ∈ αB, we have ν(v) ≤ α and

hence, by (68.10)

ν((f − 1B⊂V)(v)) ≤ κν(v) ≤ κα,

which implies that

ν(w − (f(v) − v)) ≤ ν(w) + ν((f − 1B−V)(v))
≤ (1 − κ)α+ κα = α.

Therefore, it makes sense to define hw : αB → αB by

hw(v) := w − (f(v) − v) for all v ∈ αB. (68.12)

Since hw is the difference of a constant with value w and a restriction of
f − 1B−V , it is constricted and has an absolute striction no greater than
κ. Therefore, it is a contraction, and since its domain αB is closed, the
Contraction Fixed Point Theorem states that hw has a fixed point z ∈ αB.
It is evident from (68.12) that a fixed point of hw is a solution of (68.11).

We proved that (68.11) has a unique solution z ∈ B and that this solution
satisfies

ν(z) ≤ α :=
ν(w)

1 − κ
. (68.13)

If we define g : (1 − κ)B → f<((1 − κ)B) in such a way that g(w) is this
solution of (68.11), then g is the inverse we are seeking. It follows from
(68.13) that ν(g(w)) ≤ 1

1−κν(w) for all w ∈ (1 − κ)B. In view of part (ii)
of Prop.2 of Sect.62, this proves that g is confined.

Lemma 2: The assertion of the Local Inversion Theorem, except possi-
bly the statement starting with “Moreover”, is valid.

Proof: Let α : E → E ′ be the (invertible) tangent to ϕ at x. Since D
is open, we may choose a norming cell B such that x + B ⊂ D. We define
f : B → V by

f := (α←|D′ ◦ ϕ|x+B ◦ (x+ 1V)|x+BB ) − x. (68.14)

Since ϕ is of class C1, so is f . Clearly, we have

f(0) = 0, ∇0f = 1V . (68.15)
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Put ν := noB, so that B = Ce(ν). Choose ε ∈ ]0, 1[ (ε := 1
2 would do). If we

apply Prop.4 of Sect.64 to the case when ϕ there is replaced by f and k by
{0}, we see that there is δ ∈ ]0, 1] such that

κ := str(f |δB − 1δB⊂V ; ν, ν) ≤ ε. (68.16)

Now, it is clear from (64.2) that a striction relative to ν and ν ′ remains
unchanged if ν and ν ′ are multiplied by the same strictly positive factor.
Hence, (68.16) remains valid if ν there is replaced by 1

δ
ν. Since Ce(1

δ
ν) =

δCe(ν) = δB (see Prop.6 of Sect.51), it follows from (68.16) that Lemma
1 can be applied when ν, B, and f there are replaced by 1

δ
ν, δB and f |δB,

respectively. We infer that if we put

Mo := (1 − κ)δB, No := f<(Mo),

then f |Mo

No
has an inverse g : Mo → No that is confined near zero. Note

that Mo and No are both open neighborhoods of zero, the latter because it
is the pre-image of an open set under a continuous mapping. We evidently
have

g|V − 1Mo⊂V = (1No⊂V − f |No
) ◦ g.

In view of (68.15), 1No⊂V−f |No
is small near 0 ∈ V. Since g is confined near

0, it follows by Prop.3 of Sect.62 that g|V−1Mo⊂V is small near zero. By the
Characterization of Gradients of Sect.63, we conclude that g is differentiable
at 0 with ∇0g = 1V .

We now define

N := x+ No, N ′ := ϕ(x) + (∇α)>(Mo).

These are open neighborhoods of x and ϕ(x), respectively. A simple calcu-
lation, based on (68.14) and g = (f |Mo

No
)←, shows that

ψ := (x+ 1V)|NNo
◦ g ◦ (α← − x)|Mo

N ′ (68.17)

is the inverse of ϕ|N ′

N . Using the Chain Rule and the fact that g is dif-
ferentiable at 0, we conclude from (68.17) that ψ is differentiable at ϕ(x).

Lemma 3: The assertion of the Implicit Mapping Theorem, except pos-
sibly the statement starting with “Moreover”, is valid.

Proof: We define ω̃ : A → E × E ′′ by

ω̃(x, y) := (x, ω(x, y)) for all (x, y) ∈ A. (68.18)
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Of course, ω̃ is of class C1. Using Prop.2 of Sect.63 and (65.4), we see that

(∇(xo,yo)ω̃)(u,v) = (u, (∇xoω(·, yo))u + (∇yoω(xo, ·))v)

for all (u,v) ∈ V × V ′

. Since ∇yoω(xo, ·) is invertible, so is ∇(xo,yo)ω̃. In-
deed,we have

(∇(xo,yo)ω̃)−1(u,w) = (u, (∇yoω(xo, ·))−1(w − (∇xoω(·, yo))u))

for all (u,w) ∈ V×V ′′

. Lemma 2 applies and we conclude that ω̃ has a local
inverse ρ with (xo, yo) ∈ Rng ρ that is differentiable at ω̃(xo, yo) = (xo, zo).
In view of Prop.2, (i), we may assume that the domain of ρ is of the form
D×D′′, where D and D′′ are open neighborhoods of xo and zo, respectively.
Let ψ : D ×D′′ → E and ψ′ : D ×D′′ → E ′ be the value-wise terms of ρ, so
that

ρ(x, z) = (ψ(x, z), ψ′(x, z)) for all x ∈ D, z ∈ D′′.
Then, by (68.18),

ω̃(ρ(x, y)) = (ψ(x, z), ω(ψ(x, z), ψ′(x, z))) = (x, z)

and hence

ψ(x, z) = x, ω(x, ψ′(x, z)) = z for all x ∈ D, z ∈ D′′. (68.19)

Since ρ(xo, zo) = (ψ(xo, zo), ψ
′(xo, zo)) = (xo, yo), we have ψ′(xo, zo) = yo.

Therefore, if we define ϕ : D → E ′′ by ϕ(x) := ψ′(x, zo), we see that ϕ(xo) =
yo and (68.5) are satisfied. The differentiability of ϕ at xo follows from the
differentiablity of ρ at (xo, zo).

If we define M := Rng ρ, it is immediate that ϕ(x) is the only solution
of (68.8).

Lemma 4: Let V and V ′ be linear spaces of equal dimension. Then
Lis(V,V ′

) is an open subset of Lin(V,V ′

) and the inversion mapping
inv : Lis(V,V ′

) → Lin(V ′

,V) defined by inv(L) := L−1 is differentiable.
Proof: We apply Lemma 3 with E replaced by Lin(V,V ′

), E ′ by
Lin(V ′

,V), and E ′′ by LinV. For ω of Lemma 3 we take the mapping
(L,M) 7→ ML from Lin(V,V ′

) × Lin(V ′

,V) to LinV. Being bilinear,
this mapping is of class C1 (see Prop.1 of Sect.66). Its partial 2-gradient
at (L,M) does not depend on M. It is the right-multiplication RiL ∈
Lin(Lin(V ′

,V),LinV) defined by RiL(K) := KL for all K ∈ Lin(V,V ′).
It is clear that RiL is invertible if and only if L is invertible. (We have
(RiL)−1 = RiL−1 if this is the case.) Thus, given Lo ∈ Lis(V,V ′

), we can
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apply Lemma 3 with Lo,L
−1
o , and 1V playing the roles of xo, yo, and zo,

respectively. We conclude that there is an open neighborhood D of Lo in
Lin(V,V ′

) such that the equation

? M ∈ Lin(V ′

,V), LM = 1V

has a solution for every L ∈ D. Since this solution can only be L−1 = inv(L),
it follows that the role of the mapping ϕ of Lemma 3 is played by inv|D.
Therefore, we must have D ⊂ Lis(V,V ′

) and inv must be differentiable at
Lo. Since Lo ∈ Lis(V,V ′

) was arbitrary, it follows that Lis(V,V ′

) is open
and that inv is differentiable.

Completion of Proofs: We assume that hypotheses of the Local Inver-
sion Theorem are satisfied. The assumption that ϕ has an invertible tangent
at x ∈ D is equivalent to ∇xϕ ∈ Lis(V,V ′

). Since ∇ϕ is continuous and
since Lis(V,V ′

) is an open subset of Lin(V,V ′

) by Lemma 4, it follows that
G := (∇ϕ)<(Lis(V,V ′

)) is an open subset of E . By Lemma 2, we can choose
a local inverse of ϕ near x which is differentiable and hence continuous at
ϕ(x). By Prop.2, (ii), we can adjust this local inverse such that its range
is included in G. Let ψ be the local inverse so adjusted. Then ϕ has an
invertible tangent at every z ∈ Rngψ. Let z ∈ Rngψ be given. Applying
Lemma 2 to z, we see that ϕ must have a local inverse near z that is differ-
entiable at ϕ(z). By Prop.1, it follows that ψ must also be differentiable at
ϕ(z). Since z ∈ Rngψ was arbitrary, it follows that ψ is differentiable. The
formula (68.4) follows from Prop.1. Since inv : Lis(V,V ′

) → Lin(V ′

,V) is
differentiable and hence continuous by Lemma 4, since ∇ϕ is continuous by
assumption, and since ψ is continuous because it is differentiable, it follows

that the composite inv ◦∇ϕ|Lis(V,V
′

)
Rngψ ◦ψ is continuous. By (68.4), this com-

posite is none other than ∇ψ, and hence the proof of the Local Inversion
Theorem is complete.

Assume, now, that the hypotheses of the Implicit Mapping Theorem
are satisfied. By the Local Inversion Theorem, we can then choose a local
inverse ρ of ω̃, as defined by (68.18), that is of class C1. It then follows that
the function ϕ : D → E ′ defined in the proof of Lemma 3 is also of class
C1. The formula (68.6) is obtained easily by differentiating the constant
x 7→ ω(x, ϕ(x)), using Prop.1 of Sect.65 and the Chain Rule.

To prove the Differentiation Theorem for Inversion Mappings, one applies
the Implicit Mapping Theorem in the same way as Lemma 3 was applied to
obtain Lemma 4.

Pitfall: Let I and I ′ be intervals and let f : I → I ′ be of class C1 and
surjective. If f has an invertible tangent at every t ∈ I, then f is not only
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locally invertible near every t ∈ I but (globally) invertible, as is easily seen.
This conclusion does not generalize to the case when I and I ′ are replaced by
connected open subsets of flat spaces of higher dimension. The curvilinear
coordinate systems discussed in Sect.74 give rise to counterexamples. One
can even give counterexamples in which I and I ′ are replaced by convex
open subsets of flat spaces.

Notes 68

(1) The Local Inversion Theorem is often called the “Inverse Function Theorem”. Our
term is more descriptive.

(2) The Implicit Mapping Theorem is most often called the “Implicit Function Theo-
rem”.

(3) If the sets D and D
′ of the Local Inversion Theorem are both subsets of R

n for
some n ∈ N, then ∇xϕ can be identified with an n-by-n matrix (see (65.12)). This
matrix is often called the “Jacobian matrix” and its determinant the “Jacobian”
of ϕ at x. Some textbook authors replace the condition that ∇xϕ be invertible by
the condition that the Jacobian be non-zero. I believe it is a red herring to drag
in determinants here. The Local Inversion Theorem has an extension to infinite-
dimensional spaces, where it makes no sense to talk about determinants.

69 Extreme Values, Constraints

In this section E and F denote flat spaces with translation spaces V and W ,
respectively, and D denotes a subset of E .

The following definition is “local” variant of the definition of an ex-
tremum given in Sect.08.

Definition 1: We say that a function f : D → R attains a local
maximum [local minimum] at x ∈ D if there is N ∈ Nhdx(D) (see
(56.1)) such that f |N attains a maximum [minimum] at x. We say that
f attains a local extremum at x if it attains a local maximum or local
minimum at x.

The following result is a direct generalization of the Extremum Theorem
of elementary calculus (see Sect.08).

Extremum Theorem: If f : D → R attains a local extremum at
x ∈ IntD and if f is differentiable at x, then ∇xf = 0.

Proof: Let v ∈ V be given. It is clear that Sx,v := {s ∈ R | x + sv ∈
IntD} is an open subset of R and the function (s 7→ f(x+ sv)) : Sx,v → R

attains a local extremum at 0 ∈ R and is differentiable at 0 ∈ R. Hence, by
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the Extremum Theorem of elementary calculus, and by (65.13) and (65.14),
we have

0 = ∂0(s 7→ f(x+ sv)) = (ddvf)(x) = (∇xf)v.

Since v ∈ V was arbitrary, the desired result ∇xf = 0 follows.
From now on we assume that D is an open subset of E .
The next result deals with the case when a restriction of f : D → R

to a suitable subset of D, but not necessarily f itself, has an extremum at
a given point x ∈ D. This subset of D is assumed by the set on which a
given mapping ϕ : D → F has a constant value, i.e. the set ϕ<({ϕ(x)}).
The assertion that f |ϕ<({ϕ(x)}) has an extremum at x is often expressed by
saying that f attains an extremum at x subject to the constraint that ϕ be
constant.

Constrained-Extremum Theorem: Assume that f : D → R and
ϕ : D → F are both of class C1 and that ∇xϕ ∈ Lin(V,W) is surjective for
a given x ∈ D. If f |ϕ<(ϕ(x)}) attains a local extremum at x, then

∇xf ∈ Rng (∇xϕ)⊤. (69.1)

Proof: We put U := Null ∇xϕ and choose a supplement Z of U in V.
Every neighborhood of 0 in V includes a set of the form N + M, where N
is an open neighborhood of 0 in U and M is an open neighborhood of 0 in
Z. Since D is open, we may select N and M such that x + N + M ⊂ D.
We now define ω : N ×M → F by

ω(u, z) := ϕ(x+ u + z) for all u ∈ N , z ∈ M. (69.2)

It is clear that ω is of class C1 and we have

∇0ω(0, ·) = ∇xϕ|Z . (69.3)

Since ∇xϕ is surjective, it follows from Prop.5 of Sect.13 that ∇xϕ|Z is
invertible. Hence we can apply the Implicit Mapping Theorem of Sect.68 to
the case when A there is replaced by N ×M, the points xo, yo by 0, and zo
by ϕ(x). We obtain an open neighborhood G of 0 in U with G ⊂ N and a
mapping h : G → Z, of class C1, such that h(0) = 0 and

ω(u,h(u)) = ϕ(x) for all u ∈ G. (69.4)

Since ∇(1)ω(0,0) = ∇0ω(·,0) = ∇xϕ|U = 0 by the definition
U := Null ∇xϕ, the formula (68.6) yields in our case that ∇0h = 0, i.e.
we have

h(0) = 0, ∇0h = 0. (69.5)
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It follows from (69.2) and (69.4) that x + u + h(u) ∈ ϕ<({ϕ(x)}) for all
u ∈ G and hence that

(u 7→ f(x+ u + h(u))) : G → R

has a local extremum at 0. By the Extremum Theorem and the Chain Rule,
it follows that

0 = ∇0(u 7→ f(x+ u + h(u))) = ∇xf(1U⊂V + ∇0h|V),

and therefore, by (69.5), that ∇xf |U = (∇xf)1U⊂V = 0, which means that
∇xf ∈ U⊥ = (Null ∇xϕ)⊥. The desired result (69.1) is obtained by applying
(22.9).

In the case when F := R, the Constrained-Extremum Theorem reduces
to

Corollary 1: Assume that f, g : D → R are both of class C1 and that
∇xg 6= 0 for a given x ∈ D. If f |g<({g(x)}) attains a local extremum at x,
then there is λ ∈ R such that

∇xf = λ∇xg. (69.6)

In the case when F := R
I , we can use (23.19) and obtain

Corollary 2: Assume that f : D → R and all terms gi : D → R

in a finite family g := (gi | i ∈ I) : D → R
I are of class C1 and that

(∇xgi | i ∈ I) is linearly independent for a given x ∈ D. If f |g<({g(x)})

attains a local extremum at x, then there is λ ∈ R
I such that

∇xf =
∑

i∈I

λi∇xgi. (69.7)

Remark 1: If E is two-dimensional then Cor.1 can be given a geo-
metrical interpretation as follows: The sets Lg := g<({g(x)}) and Lf :=
f<({f(x)}) are the “level-lines” through x of f and g, respectively (see
Figure).
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If these lines cross at x, then the value f(y) of f at y ∈ Lg strictly
increases or decreases as y moves along Lg from one side of the line Lf to
the other and hence f |Lg

cannot have an extremum at x. Hence, if f |Lg

has an extremum at x, the level-lines must be tangent. The assertion (69.6)
expresses this tangency. The condition ∇xg 6= 0 insures that the level-line
Lg does not degenerate to a point.

Notes 69

(1) The number λ of (69.6) or the terms λi occuring in (69.7) are often called “Lagrange
multipliers”.

610 Integral Representations

Let I ∈ Sub R be some genuine interval and let h : I → V be a continuous
process with values in a given linear space V. For every λ ∈ V∗ the composite
λh : I → R is then continuous. Given a, b ∈ I one can therefore form the
integral

∫ b

a
λh in the sense of elementary integral calculus (see Sect.08). It

is clear that the mapping

(λ 7→
∫ b

a

λh) : V∗ → R

is linear and hence an element of V∗∗ ∼= V.
Definition 1: Let h : I → V be a continuous process with values in the

linear space V. Given any a, b ∈ I the integral of h from a to b is defined
to be the unique element

∫ b

a
h of V which satisfies

λ

∫ b

a

h =

∫ b

a

λh for all λ ∈ V∗. (610.1)

Proposition 1: Let h : I → V be a continuous process and let L be a
linear mapping from V to a given linear space W. Then Lh : I → W is a
continuous process and

L

∫ b

a

h =

∫ b

a

Lh for all a, b ∈ I. (610.2)

Proof: Let ω ∈ W∗ and a, b ∈ I be given. Using Def.1 twice, we obtain

ω(L

∫ b

a

h) = (ωL)

∫ b

a

h =

∫ b

a

(ωL)h =

∫ b

a

ω(Lh) = ω

∫ b

a

Lh.
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Since ω ∈ W∗ was arbitrary, (610.2) follows.
Proposition 2: Let ν be a norm on the linear space V and let h : I → V

be a continuous process. Then ν ◦ h : I → R is continuous and, for every
a, b ∈ I, we have

ν(

∫ b

a

h) ≤
∣

∣

∣

∣

∫ b

a

ν ◦ h

∣

∣

∣

∣

. (610.3)

Proof: The continuity of ν ◦ h follows from the continuity of ν (Prop.7
of Sect.56) and the Composition Theorem for Continuity of Sect.56.

It follows from (52.14) that

|λh|(t) = |λh(t)| ≤ ν∗(λ)ν(h(t)) = ν∗(λ)(ν ◦ h)(t)

holds for all λ ∈ V∗ and all t ∈ I, and hence that

|λh| ≤ ν ◦ h for all λ ∈ Ce(ν∗).

Using this result and (610.1), (08.40), and (08.42), we obtain

∣

∣

∣

∣

λ

∫ b

a

h

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

λh

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ a

b

|λh|
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ b

a

ν ◦ h

∣

∣

∣

∣

for all λ ∈ Ce(ν∗) and all a, b ∈ I. The desired result now follows from the
Norm-Duality Theorem, i.e. (52.15).

Most of the rules of elementary integral calculus extend directly to inte-
grals of processes with values in a linear space. For example, if h : I → V is
continuous and if a, b, c ∈ I, then

∫ b

a

h =

∫ c

a

h +

∫ b

c

h. (610.4)

The following result is another example.
Fundamental Theorem of Calculus: Let E be a flat space with trans-

lation space V. If h : I → V is a continuous process and if x ∈ E and a ∈ I
are given, then the process p : I → E defined by

p(t) := x+

∫ t

a

h for all t ∈ I (610.5)

is of class C1 and p• = h.
Proof: Let λ ∈ V∗ be given. By (610.5) and (610.1) we have

λ(p(t) − x) = λ

∫ t

a

h =

∫ t

a

λh for all t ∈ I.
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By Prop.1 of Sect.61 p is differentiable and we have (λ(p − x))• = λp•.
Hence, the elementary Fundamental Theorem of Calculus (see Sect.08) gives
λp• = λh. Since λ ∈ V∗ was arbitrary, we conclude that p• = h, which is
continuous by assumption.

In the remainder of this section, we assume that the following items are
given: (i) a flat space E with translation space V, (ii) An open subset D of
E , (iii) An open subset D of R × E such that, for each x ∈ D,

D(·,x) := {s ∈ R | (s, x) ∈ D}
is a non-empty open inteval, (iv) a linear space W .

Consider now a mapping h : D → W such that h(·, x) : D(·,x) → W is

continuous for all x ∈ D. Given a, b ∈ R such that a, b ∈ D(·,x) for all x ∈ D,
we can then define k : D → W by

k(x) :=

∫ b

a

h(·, x) for all x ∈ D. (610.6)

We say that k is defined by an integral representation.
Proposition 3: If h : D → W is continuous, so is the mapping

k : D → W defined by the integral representation (610.6).
Proof: Let x ∈ D be given. Since D is open, we can choose a norm ν

on V such that x+ Ce(ν) ⊂ D. We may assume, without loss of generality,
that a < b. Then [a, b] is a compact interval and hence, in view of Prop.4
of Sect.58, [a, b] × (x + Ce(ν)) is a compact subset of D. By the Uniform
Continuity Theorem of Sect. 58, it follows that the restriction of h to [a, b]×
(x+ Ce(ν)) is uniformly continuous. Let µ be a norm on W and let ε ∈ P

×

be given. By Prop.4 of Sect.56, we can determine δ ∈ ]0, 1 ] such that

µ(h(s, y) − h(s, x)) <
ε

b− a

for all s ∈ [a, b] and all y ∈ x + δCe(ν). Hence, by (610.6) and Prop.2, we
have

µ(k(y) − k(x)) = µ

(
∫ b

a

(h(·, y) − h(·, x))
)

≤
∫ b

a

µ ◦ (h(·, y) − h(·, x))

≤ (b− a)
ε

b− a
= ε

whenever ν(y − x) < δ. Since ε ∈ P
× was arbitrary, the continuity of k

at x follows by Prop.1 of Sect.56. Since x ∈ D was arbitrary, the assertion
follows.
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The following is a stronger version of Prop.3.

Proposition 4: Let D ⊂ R × R × E be defined by

D := {(a, b, x) | x ∈ D, (a, x) ∈ D, (b, x) ∈ D}. (610.7)

Then, if h : D → W is continuous, so is the mapping
(

(a, b, x) 7→
∫ b

a
h(·, x)

)

: D → W.

Proof: Choose a norm µ on W . Let (a, b, x) ∈ D be given. Since
µ ◦ h is continuous at (a, x) and at (b, x) and since D is open, we can find
N ∈ Nhdx(D) and σ ∈ P

× such that

N := ((a+ ]−σ, σ[ ) ∪ (b+ ]−σ, σ[ )) ×N

is a subset of D and such that the restriction of µ ◦ h to N is bounded by
some β ∈ P

×. By Prop.2, it follows that

µ(

∫ a

s

h(·, y) +

∫ t

b

h(·, y)) ≤ ( |s− a| + |t− b| )β (610.8)

for all y ∈ N , all s ∈ a+ ]−σ, σ[, and all t ∈ b+ ]−σ, σ].
Now let ε ∈ P

× be given. If we put δ := min{σ, ε
4β}, it follows from

(610.8) that

µ

(
∫ a

s

h(·, y) +

∫ t

b

h(·, y)
)

<
ε

2
(610.9)

for all y ∈ N , all s ∈ a+ ]−δ, δ], and all t ∈ b+ ]−δ, δ]. On the other hand,
by Prop.3, we can determine M ∈ Nhdx(D) such that

µ

(
∫ b

a

h(·, y) −
∫ b

a

h(·, x)
)

<
ε

2
(610.10)

for all y ∈ M. By (610.4) we have

∫ t

s

h(·, y) −
∫ b

a

h(·, x) =

∫ b

a

h(·, y) −
∫ b

a

h(·, x)

+

∫ a

s

h(·, y) +

∫ t

b

h(·, y).

Hence it follows from (610.9) and (610.10) that

µ

(
∫ t

s

h(·, y) −
∫ b

a

h(·, x)
)

< ε
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for all y ∈ M∩N ∈ Nhdx(D), all s ∈ a+ ]−δ, δ], and all t ∈ b+ ]−δ, δ[. Since
ε ∈ P

× was arbitrary, it follows from Prop.1 of Sect.56 that the mapping
under consideration is continuous at (a, b, x).

Differentiation Theorem for Integral Representations: Assume
that h : D → W satisfies the following conditions:

(i) h(•, x) is continuous for every x ∈ D.

(ii) h(s, •) is differentiable at x for all (s, x) ∈ D and the partial 2-gradient
∇(2)h : D → Lin(V,W) is continuous.

Then the mapping k : D → W defined by the integral representation
(610.6) is of class C1 and its gradient is given by the integral representation

∇xk =

∫ b

a

∇(2)h(•, x) for all x ∈ D. (610.11)

Roughly, this theorem states that if h satisfies the conditions (i) and (ii),
one can differentiate (610.6) with respect to x by “differentiating under the
integral sign”.

Proof: Let x ∈ D be given. As in the proof of Prop.3, we can choose
a norm ν on V such that x + Ce(ν) ⊂ D, and we may assume that a < b.
Then [a, b] ×

(

x+ Ce(ν)
)

is a compact subset of D. By the Uniform Conti-
nuity Theorem of Sect.58, the restriction of ∇(2)h to [a, b] ×

(

x+ Ce(ν)
)

is
uniformly continuous. Hence, if a norm µ on W and ε ∈ P

× are given, we
can determine δ ∈ ]0, 1 ] such that

‖∇(2)h(s, x+ u) −∇(2)h(s, x)‖ν,µ <
ε

b− a
(610.12)

holds for all s ∈ [a, b] and u ∈ δCe(ν).

We now define n :
(

D − (0, x)
)

→ W by

n(s,u) := h(s, x+ u) − h(s, x) −
(

∇(2)h(s, x)
)

u. (610.13)

It is clear that ∇(2)n exists and is given by

∇(2)n(s,u) = ∇(2)h(s, x+ u) −∇(2)h(s, x).

By (610.12), we hence have

‖∇(2)n(s,u)‖ν,µ <
ε

b− a
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for all s ∈ [a, b] and u ∈ δCe(ν). By the Striction Estimate for Differentiable
Mapping of Sect.64, it follows that n(s, •)|δCe(ν) is constricted for all s ∈ [a, b]
and that

str(n(s, •)|δCe(ν) ; ν, µ) ≤ ε

b− a
for all s ∈ [a, b].

Since n(s,0) = 0 for all s ∈ [a, b], the definition (64.1) shows that

µ (n(s,u)) ≤ ε

b− a
ν(u) for all s ∈ [a, b]

and all u ∈ δCe(ν). Using Prop.2, we conclude that

µ

(
∫ b

a

n(•,u)

)

≤
∫ b

a

µ ◦ (n(•,u)) ≤ εν(u)

whenever u ∈ δCe(ν). Since ε ∈ P
× was arbitrary, it follows that the map-

ping
(

u 7→
∫ b

a
n(•,u)

)

is small near 0 ∈ V (see Sect.62). Now, integrating

(610.13) with respect to s ∈ [a, b] and observing the representation (610.6)
of k, we obtain

∫ b

a

n(•,u) = k(x+ u) − k(u) −
(

∫ b

a

∇(2)h(•, x)
)

u

for all u ∈ D−x. Therefore, by the Characterization of Gradients of Sect.63,
k is differentiable at x and its gradient is given by (610.11). The continuity
of ∇k follows from Prop.3.

The following corollary deals with generalizations of integral representa-
tions of the type (610.6).

Corollary: Assume that h : D → W satisfies the conditions (i) and
(ii) of the Theorem. Assume, further, that f : D → R and g : D → R are
differentiable and satisfy

f(x), g(x) ∈ D(•,x) for all x ∈ D.

Then k : D → W, defined by

k(x) :=

∫ g(x)

f(x)
h(•, x) for all x ∈ D, (610.14)

is of class C1 and its gradient is given by

∇xk = h(g(x), x) ⊗∇xg − h(f(x), x) ⊗∇xf (610.15)

+

∫ g(x)

f(x)
∇(2)h(•, x) for all x ∈ D.
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Proof: Consider the set D ⊂ R × R × E defined by (610.7), so that

a, b ∈ D(•,x) for all (a, b, x) ∈ D. Since D(•,x) is assumed to be an interval

for each x ∈ D, we can define m : D → W by

m(a, b, x) :=

∫ b

a

h(•, x). (610.16)

By the Theorem, ∇(3)m : D → Lin(V,W) exists and is given by

∇(3)m(a, b, x) =

∫ b

a

∇(2)h(•, x). (610.17)

It follows from Prop.4 that ∇(3)m is continuous. By the Fundamental The-
orem of Calculus and (610.16), the partial derivatives m,1 and m,2 exist,
are continuous, and are given by

m,1 (a, b, x) = −h(a, x), m,2 (a, b, x) = h(b, x). (610.18)

By the Partial Gradient Theorem of Sect.65, it follows that m is of class C1.
Since ∇(1)m = m,1 ⊗ and ∇(2)m = m,2 ⊗, it follows from (65.9), (610.17),
and (610.18) that

(∇(a,b,x)m)(α, β,u) = h(b, x) ⊗ β − h(a, x) ⊗ α (610.19)

+

(
∫ b

a

∇(2)h(•, x)
)

u

for all (a, b, x) ∈ D and all (α, β,u) ∈ R × R × V.

Now, since f and g are differentiable, so is (f, g, 1D⊂E) : D → R×R×E
and we have

∇x(f, g, 1D⊂E) = (∇xf,∇xg,1V) (610.20)

for all x ∈ D. (See Prop.2 of Sect.63). By (610.14) and (610.16) we have

k = m ◦ (f, g,1D⊂E)|D. Therefore, by the General Chain Rule of Sect.63, k
is of class C1 and we have

∇xk = (∇(f(x),g(x),x)m)∇x(f, g,1D⊂E)

for all x ∈ D. Using (610.19) and (610.20), we obtain (610.15).
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611 Curl, Symmetry of Second Gradients

In this section, we assume that flat spaces E and E ′, with translation spaces
V and V ′, and an open subset D of E are given.

If H : D → Lin(V,V ′) is differentiable, we can apply the identification
(24.1) to the codomain of the gradient

∇H : D → Lin
(

V,Lin(V,V ′)
) ∼= Lin2(V2,V ′),

and hence we can apply the switching defined by (24.4) to the values of ∇H.
Definition 1: The curl of a differentiable mapping H : D → Lin(V,V ′)

is the mapping CurlH : D → Lin2(V2,V ′) defined by

(CurlH)(x) := ∇xH − (∇xH)∼ for all x ∈ D. (611.1)

The values of CurlH are skew, i.e. Rng CurlH ⊂ Skew2(V2,V ′).
The following result deals with conditions that are sufficient or necessary

for the curl to be zero.
Curl-Gradient Theorem: Assume that H : D → Lin(V,V ′) is of class

C1. If H = ∇ϕ for some ϕ : D → E ′ then CurlH = 0. Conversely, if D is
convex and CurlH = 0 then H = ∇ϕ for some ϕ : D → E ′.

The proof will be based on the following
Lemma: Assume that D is convex. Let q ∈ D and q′ ∈ E ′ be given and

let ϕ : D → E ′ be defined by

ϕ(q + v) := q′ +

(
∫ 1

0
H(q + sv)ds

)

v for all v ∈ D − q. (611.2)

Then ϕ is of class C1 and we have

∇ϕ(q + v) = H(q + v) −
(

∫ 1

0
s(CurlH)(q + sv)ds

)

v (611.3)

for all v ∈ D − q.
Proof: We define D ⊂ R × V by

D := {(s,u) | u ∈ D − q, q + su ∈ D}.

Since D is open and convex, it follows that, for each u ∈ D − q, D(•,u) :=
{s ∈ R | q + su ∈ D} is an open interval that includes [0, 1]. Since H is of
class C1, so is

((s,u) 7→ H(q + su)) : D → Lin(V,V ′);
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hence we can apply the Differentiation Theorem for Integral Representations
of Sect.610 to conclude that u 7→

∫ 1
0 H(q + su)ds is of class C1 and that its

gradient is given by

∇v(u 7→
∫ 1

0
H(q + su)ds) =

∫ 1

0
s∇H(q + sv)ds

for all v ∈ D − q. By the Product Rule (66.7), it follows that the mapping
ϕ defined by (611.2) is of class C1 and that its gradient is given by

(∇q+vϕ)u =

(
∫ 1

0
s∇H(q + sv)uds

)

v +

(
∫ 1

0
H(q + sv)ds

)

u

for all v ∈ D− q and all u ∈ V. Applying the definitions (24.2), (24.4), and
(611.1), and using the linearity of the switching and Prop.1 of Sect.610, we
obtain

(∇q+vϕ)u =

(
∫ 1

0
s(CurlH)(q + sv)ds

)

(u,v) (611.4)

+

(
∫ 1

0
(s(∇H(q + sv))v + H(q + sv))ds

)

u

for all v ∈ D− q and all u ∈ V. By the Product Rule (66.10) and the Chain
Rule we have, for all s ∈ [0, 1],

∂s(t 7→ tH(q + tv)) = H(q + sv) + s(∇H(q + sv))v.

Hence, by the Fundamental Theorem of Calculus, the second integral on the
right side of (611.4) reduces to H(q + v). Therefore, since CurlH has skew
values and since u ∈ V was arbitrary, (611.4) reduces to (611.3).

Proof of the Theorem: Assume, first, that D is convex and that
CurlH = 0. Choose q ∈ D, q′ ∈ E ′ and define ϕ : D → E ′ by (611.2). Then
H = ∇ϕ by (611.3).

Conversely, assume that H = ∇ϕ for some ϕ : D → E ′. Let q ∈ D
be given. Since D is open, we can choose a convex open neighborhood N
of q with N ⊂ D. Let v ∈ N − q by given. Since N is convex, we have
q + sv ∈ N for all s ∈ [0, 1], and hence we can apply the Fundamental
Theorem of Calculus to the derivative of s 7→ ϕ(q + sv), with the result

ϕ(q + v) = ϕ(q) +

(
∫ 1

0
H(q + sv)ds

)

v.
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Since v ∈ N −q was arbitrary, we see that the hypotheses of the Lemma are
satisfied for N instead of D, q′ := ϕ(q), ϕ|N instead of ϕ, and H|N = ∇ϕ|N
instead of H. Hence, by (611.3), we have

(
∫ 1

0
s(CurlH)(q + sv)ds

)

v = 0 (611.5)

for all v ∈ N − q. Now let u ∈ V be given. Since N − q is a neighborhood
of 0 ∈ V, there is a δ ∈ P

× such that tu ∈ N − q for all t ∈ ]0, δ]. Hence,
substituting tu for v in (611.5) and dividing by t gives

(
∫ 1

0
s(CurlH)(q + stu)ds

)

u = 0 for all t ∈ ]0, δ].

since CurlH is continuous, we can apply Prop.3 of Sect.610 and, in the limit
t → 0, obtain ((CurlH)(q))u = 0. Since u ∈ V and q ∈ D were arbitrary,
we conclude that CurlH = 0.

Remark 1: In the second part of the Theorem, the condition that D be
convex can be replaced by the weaker one that D be “simply connected”.
This means, intuitively, that every closed curve in D can be continuously
shrunk entirely within D to a point.

Since Curl∇ϕ = ∇(2)ϕ − (∇(2)ϕ)∼ by (611.1), we can restate the first
part of the Curl-Gradient Theorem as follows:

Theorem on Symmetry of Second Gradients: If ϕ : D → E ′
is of class C2, then its second gradient ∇(2)ϕ : D → Lin2(V2,V ′) has
symmetric values, i.e. Rng∇(2)ϕ ⊂ Sym2(V2,V ′).

Remark 2: The assertion that ∇x(∇ϕ) is symmetric for a given x ∈ D
remains valid if one merely assumes that ϕ is differentiable and that ∇ϕ
is differentiable at x. A direct proof of this fact, based on the results of
Sect.64, is straightforward although somewhat tedious.

We assume now that E := E1 ×E2 is the set-product of flat spaces E1, E2

with translation spaces V1,V2, respectively. Assume that ϕ : D → E ′ is
twice differentiable. Using Prop.1 of Sect.65 repeatedly, it is easily seen that

∇(2)ϕ(x) =

(∇(1)∇(1)ϕ)(x)(ev1, ev1) + (∇(1)∇(2)ϕ)(x)(ev1, ev2) + (611.6)

(∇(2)∇(1)ϕ)(x)(ev2, ev1) + (∇(2)∇(2)ϕ)(x)(ev2, ev2)

for all x ∈ D, where ev1 and ev2 are the evaluation mappings from V :=
V1 × V2 to V1 and V2, respectively (see Sect.04). Evaluation of (611.6) at
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(u,v) = ((u1,u2), (v1,v2)) ∈ V2 gives

∇(2)ϕ(x)(u,v) =

(∇(1)∇(1)ϕ)(x)(u1,v1) + (∇(1)∇(2)ϕ)(x)(u1,v2) + (611.7)

(∇(2)∇(1)ϕ)(x)(u2,v1) + (∇(2)∇(2)ϕ)(x)(u2,v2).

The following is a corollary to the preceding theorem.
Theorem on the Interchange of Partial Gradients: Assume that

D is an open subset of a product space E := E1 × E2 and that ϕ : D → E ′
is of class C2. Then

∇(1)∇(2)ϕ = (∇(2)∇(1)ϕ)∼, (611.8)

where the operation ∼ is to be understood as value-wise switching.
Proof: Let x ∈ D and w ∈ V1 ×V2 be given. If we apply (611.7) to the

case when u := (w1,0), v := (0,w2) and then with u and v interchanged
we obtain

∇(2)ϕ(x)(u,v) = (∇(1)∇(2)ϕ)(x)(w1,w2),

∇(2)ϕ(x)(v,u) = (∇(2)∇(1)ϕ)(x)(w2,w1).

Since w ∈ V1 ×V2 was arbitrary, the symmetry of ∇(2)ϕ(x) gives (611.8).
Corollary: Let I be a finite index set and let D be an open subset

of R
I . If ϕ : D → E ′ is of class C2, then the second partial derivatives

ϕ,i ,k : D → V ′ satisfy

ϕ,i ,k = ϕ,k ,i for all i, k ∈ I. (611.9)

Remark 3: Assume D is an open subset of a Euclidean space E with
translation space V. A mapping h : D → V ∼= V∗ is then called a vector-field
(see Sect.71). If h is differentiable, then the range of Curlh is included in
Skew2(V2,R) ∼= SkewV. If V is 3-dimensional, there is a natural doubleton
of orthogonal isomorphisms from SkewV to V, as will be explained in Vol.II.
If one of these two isomorphisms, say V ∈ Orth(SkewV,V), is singled out,
we may consider the vector-curl curl h := V(Curlh)|SkewV of the vector
field h (Note the lower-case “c”). This vector-curl rather than the curl of
Def.1 is used in much of the literature.

Notes 611

(1) In some of the literature on “Vector Analysis”, the notation ∇× h instead of curlh
is used for the vector-curl of h, which is explained in the Remark above. This
notation should be avoided for the reason mentioned in Note (1) to Sect.67.
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612 Lineonic Exponentials

We note the following generalization of a familiar result of elementary cal-
culus.

Proposition 1: Let E be a flat space with translation space V and let
I be an interval. Let g be a sequence of continuous processes in Map (I,V)
that converges locally uniformly to h ∈ Map (I,V). Let a ∈ I and q ∈ E be
given and define the sequence z in Map (I, E) by

zn(t) := q +

∫ t

a

gn for all n ∈ N
× and t ∈ I. (612.1)

Then h is continuous and z converges locally uniformly to the process p :
I → E defined by

p(t) := q +

∫ t

a

h for all t ∈ I. (612.2)

Proof: The continuity of h follows from the Theorem on Continuity of
Uniform Limits of Sect.56. Hence (612.2) is meaningful. Let ν be a norm
on V. By Prop.2 of Sect.610 and (612.1) and (612.2) we have

ν(zn(t) − p(t)) = ν

(
∫ t

a

(gn − h)

)

≤
∣

∣

∣

∣

∫ t

a

ν ◦ (gn − h)

∣

∣

∣

∣

(612.3)

for all n ∈ N
× and all t ∈ I. Now let s ∈ I be given. We can choose

a compact interval [b, c] ⊂ I such that a ∈ [b, c] and such that [b, c] is a
neightborhood of s relative to I (see Sect.56). By Prop.7 of Sect.58, g|[b,c]
converges uniformly to h|[b,c]. Now let ǫ ∈ P

× be given. By Prop.7 of Sect.55
we can determine m ∈ N

× such that

ν ◦ (gn − h)|[b,c] <
ǫ

c− b
for all n ∈ m+ N.

Hence, by (612.3), we have

ν(zn(t) − p(t)) < |t− a| ǫ

c− b
< ǫ for all n ∈ m+ N

and all t ∈ [b, c]. Since ε ∈ P
× was arbitrary, we can use Prop.7 of Sect.55

again to conclude that z|[b,c] converges uniformly to p|[b,c]. Since s ∈ I was
arbitrary and since [b, c] ∈ Nhds(I), the conclusion follows.

From now on we assume that a linear space V is given and we consider
the algebra LinV of lineons on V (see Sect.18).
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Proposition 2: The sequence S in Map (LinV,LinV) defined by

Sn(L) :=
∑

k∈n[

1

k!
Lk (612.4)

for all L ∈ LinV and all n ∈ N
× converges locally uniformly.

Its limit is called the (lineonic) exponential for V and is denoted by
expV : LinV → LinV. The exponential expV is continuous.

Proof: We choose a norm ν on V. Using Prop.6 of Sect.52 and induction,
we see that ‖Lk‖ν ≤ ‖L‖νk for all k ∈ N and all L ∈ LinV (see (52.9)).
Hence, given σ ∈ P

×, we have

‖ 1

k!
Lk‖ν ≤ σk

k!

for all k ∈ N and all L ∈ σCe(‖•‖ν). Since the sum-sequence of (σ
k

k! | k ∈ N)
converges (to eσ), we can use Prop.9 of Sect.55 to conclude that the restric-
tion of the sum-sequence S of ( 1

k!L
k | k ∈ N) to σCe(‖ • ‖ν) converges

uniformly. Now, given L ∈ LinV, σCe(‖ • ‖ν) is a neighborhood of L if
σ > ‖L‖ν . Therefore S converges locally uniformly. The continuity of its
limit expV follows from the Continuity Theorem for Uniform Limits.

For later use we need the following:
Proposition 3: Let L ∈ LinV be given. Then the constant zero is the

only differentiable process D : R → LinV that satisfies

D• = LD and D(0) = 0. (612.5)

Proof: By the Fundamental Theorem of Calculus, (612.5) is equivalent
to

D(t) =

∫ t

0
(LD) for all t ∈ R. (612.6)

Choose a norm ν on V. Using Prop.2 of Sect.610 and Prop.6 of Sect.52, we
conclude from (612.6) that

‖D(t)‖ν ≤
∫ t

0
‖LD(s)‖νds ≤ ‖L‖ν

∫ t

0
‖D(s)‖νds,

i.e., with the abbreviations

σ(t) := ‖D(t)‖ν for all t ∈ P, κ := ‖L‖ν , (612.7)

that

0 ≤ σ(t) ≤ κ

∫ t

0
σ for all t ∈ P. (612.8)
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We define ϕ : P → R by

ϕ(t) := e−κt
∫ t

0
σ for all t ∈ P. (612.9)

Using elementary calculus, we infer from (612.9) and (612.8) that

ϕ•(t) = −κe−κt
∫ t

0
σ + e−κtσ(t) ≤ 0

for all t ∈ P and hence that ϕ is antitone. On the other hand, it is evident
from (612.9) that ϕ(0) = 0 and ϕ ≥ 0. This can happen only if ϕ = 0,
which, in turn, can happen only if σ(t) = 0 for all t ∈ P and hence, by
(612.7), if D(t) = 0 for all t ∈ P. To show that D(t) = 0 for all t ∈ −P, one
need only replace D by D ◦ (−ι) and L by −L in (612.5) and then use the
result just proved.

Proposition 4: Let L ∈ LinV be given. Then the only differentiable
process E : R → LinV that satisfies

E• = LE and E(0) = 1V (612.10)

is the one given by

E := expV ◦(ιL). (612.11)

Proof: We consider the sequence G in Map (R,LinV) defined by

Gn(t) :=
∑

k∈n[

tk

k!
Lk+1 (612.12)

for all n ∈ N
× and all t ∈ R. Since, by (612.4), Gn(t) = LSn(tL) for

all n ∈ N
× and all t ∈ R, it follows from Prop.2 that G converges locally

uniformly to L exp ◦(ιL) : R → LinV. On the other hand, it follows from
(612.12) that

1V +

∫ t

0
Gn = 1V +

∑

k∈n[

tk+1

(k + 1)!
Lk+1 = Sn+1(tL)

for all n ∈ N
× and all t ∈ R. Applying Prop.1 to the case when E and V are

replaced by LinV, I by R, g by G, a by 0, and q by 1V , we conclude that

expV(tL) = 1V +

∫ t

0
(L expV ◦(ιL)) for all t ∈ R, (612.13)
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which, by the Fundamental Theorem of Calculus, is equivalent to the asser-
tion that (612.10) holds when E is defined by (612.11).

The uniqueness of E is an immediate consequence of Prop.3.
Proposition 5: Let L ∈ LinV and a continuous process F : R → LinV

be given. Then the only differentiable process D : R → LinV that satisfies

D• = LD + F and D(0) = 0 (612.14)

is the one given by

D(t) =

∫ t

0
E(t− s)F(s)ds for all t ∈ R, (612.15)

where E : R → LinV is given by (612.11).
Proof: Let D be defined by (612.15). Using the Corollary to the Dif-

ferentiation Theorem for Integral Representations of Sect.610, we see that
D is of class C1 and that D• is given by

D•(t) = E(0)F(t) +

∫ t

0
E•(t− s)F(s)ds for all t ∈ R.

Using (612.10) and Prop.1 of Sect.610, and then (612.15), we find that
(612.14) is satisfied.

The uniqueness of D is again an immediate consequence of Prop.3.
Differentiation Theorem for Lineonic Exponentials: Let V be a

linear space. The exponential expV : LinV → LinV is of class C1 and its
gradient is given by

(∇L expV)M =

∫ 1

0
expV(sL)M expV((1 − s)L)ds (612.16)

for all L,M ∈ LinV.
Proof: Let L,M ∈ LinV be given. Also, let r ∈ R

× be given and put

K := L + rM, E1 := expV ◦(ιL), E2 := expV ◦(ιK). (612.17)

By Prop.4 we have E1
• = LE1, E2

• = KE2, and E1(0) = E2(0) = 1V .
Taking the difference and observing (612.17)1 we see that D := E2 − E1

satisfies
D• = KE2 − LE1 = LD + rME2, D(0) = 0.

Hence, if we apply Prop.5 with the choice F := rME2 we obtain

(E2 − E1)(t) = r

∫ t

0
E1(t− s)ME2(s)ds for all t ∈ R.
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For t := 1 we obtain, in view of (612.17),

1

r
(expV(L + rM) − expV(L)) =

∫ 1

0
(expV((1 − s)L))M expV(s(L + rM))ds.

Since expV is continuous by Prop.2, and since bilinear mappings are contin-
uous (see Sect.66), we see that the integrand on the right depends contin-
uously on (s, r) ∈ R

2. Hence, by Prop.3 of Sect.610 and by (65.13), in the
limit r → 0 we find

(ddM expV)(L) =

∫ 1

0
(expV((1 − s)L))M expV(sL)ds. (612.18)

Again, we see that the integrand on the right depends continuously on
(s,L) ∈ R × LinV. Hence, using Prop.3 of Sect.610 again, we conclude that
the mapping ddM expV : LinV → LinV is continuous. Since M ∈ LinV
was arbitrary, it follows from Prop.7 of Sect.65 that expV is of class C1. The
formula (612.16) is the result of combining (65.14) with (612.18).

Proposition 6: Assume that L,M ∈ LinV commute, i.e. that LM =
ML. Then:

(i) M and expV(L) commute.

(ii) We have

expV(L + M) = (expV(L))(expV(M)). (612.19)

(iii) We have

(∇L expV)M = (expV(L))M. (612.20)

Proof: Put E := expv ◦(ιL) and D := EM − ME. By Prop.4, we find
D• = E•M − ME• = LEM − MLE. Hence, since LM = ML, we obtain
D• = LD. Since D(0) = 1VM − M1V = 0, it follows from Prop.3 that
D = 0 and hence D(1) = 0, which proves (i).

Now put F := expv ◦(ιM). By the Product Rule (66.13) and by Prop.4,
we find

(EF)• = E•F + EF• = LEF + EMF.

Since EM = ME by part (i), we obtain (EF)• = (L + M)EF. Since
(EF)(0) = E(0)F(0) = 1V , by Prop.4, EF = expv ◦(ι(L + M)). Evaluation
at 1 gives (612.19), which proves (ii).

Part (iii) is an immediate consequence of (612.16) and of (i) and (ii).
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Pitfalls: Of course, when V = R, then LinV = LinR ∼= R and the
lineonic exponential reduces to the ordinary exponential exp. Prop.6 shows
how the rule exp(s+t) = exp(s) exp(t) for all s, t ∈ R and the rule exp• = exp
generalize to the case when V 6= R. The assumption, in Prop.6, that L and
M commute cannot be omitted. The formulas (612.19) and (612.20) need
not be valid when LM 6= ML.

If the codomain of the ordinary exponential is restricted to P
× it becomes

invertible and its inverse log : P
× → R is of class C1. If dimV > 1, then expV

does not have differentiable local inverses near certain values of L ∈ LinV
because for these values of L, the gradient ∇L expV fails to be injective (see
Problem 10). In fact, one can prove that expV is not locally invertible near
the values of L in question. Therefore, there is no general lineonic analogue
of the logarithm. See, however, Sect.85.

613 Problems for Chapter 6

(1) Let I be a genuine interval, let E be a flat space with translation space
V, and let p : I → E be a differentiable process. Define h : I2 → V by

h(s, t) :=

{

p(s)−p(t)
s−t if s 6= t

p•(s) if s = t

}

. (P6.1)

(a) Prove: If p• is continuous at t ∈ I, then h is continuous at
(t, t) ∈ I2.

(b) Find a counterexample which shows that h need not be continu-
ous if p is merely differentiable and not of class C1.

(2) Let f : D → R be a function whose domain D is an open convex subset
of a flat space E with translation space V.

(a) Show: If f is differentiable and ∇f is constant, then f = a|D for
some flat function a ∈ Flf(E) (see Sect.36).

(b) Show: If f is twice differentiable and ∇(2)f is constant, then f
has the form

f = a|D + Q ◦ (1D⊂E − qD→E), (P6.2)

where a ∈ Flf(E), q ∈ E , and Q ∈ Qu(V) (see Sect. 27).
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(3) Let D be an open subset of a flat space E and let W be a genuine inner-
product space. Let k : D → W× be a mapping that is differentiable
at a given x ∈ D.

(a) Show that the value-wise magnitude |k| : D → P
×, defined by

|k|(y) := |k(y)| for all y ∈ D, is differentiable at x and that

∇x|k| = 1
|k(x)|(∇xk)⊤k(x). (P6.3)

(b) Show that k/|k| : D → W× is differentiable at x and that

∇x

(

k

|k|

)

= 1
|k(x)|3

(

|k(x)|2∇xk − k(x) ⊗ (∇xk)⊤k(x)
)

. (P6.4)

(4) Let E be a genuine inner-product space with translation space V, let
q ∈ E be given, and define r : E \ {q} → V× by

r(x) := x− q for all x ∈ E \ {q} (P6.5)

and put r := |r| (see Part (a) of Problem 3).

(a) Show that r/r : E \ {q} → V× is of class C1 and that

∇
(

r

r

)

= 1
r3

(r21V − r⊗ r). (P6.6)

(Hint: Use Part (b) of Problem 3.)

(b) Let the function h : P
× → R be twice differentiable. Show that

h ◦ r : E \ {q} → R is twice differentiable and that

∇(2)(h ◦ r) = 1
r

(

1
r2

(r(h•• ◦ r) − (h• ◦ r))r⊗ r + (h• ◦ r)1V
)

.
(P6.7)

(c) Evaluate the Laplacian ∆(h ◦ r) and reconcile your result with
(67.17).

(5) A Euclidean space E of dimension n with n ≥ 2, a point q ∈ E , and a
linear space W are assumed given.

(a) Let I be an open interval, let D be an open subset of E , let
f : D → I be given by (67.16), let a be a flat function on E , let
g : I → W be twice differentiable, and put h := a|D(g ◦ f) : D →
W . Show that

∆h = 2a|D ((2ιg•• + (n+ 2)g•) ◦ f) − 4a(q)(g• ◦ f). (P6.8)
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(b) Assuming that the Euclidean space E is genuine, show that the
function h : E \ {q} → W given by

h(x) := ((e · (x− q))|x− q|−n)a + b (P6.9)

is harmonic for all e ∈ V := E − E and all a,b ∈ W . (Hint: Use
Part (a) with a determined by ∇a = e, a(q) = 0.)

(6) Let E be a flat space, let q ∈ E , let Q be a non-degenerate quadratic
form (see Sect.27) on V := E − E , and define f : E → R by

f(y) := Q(y − q) for all y ∈ E . (P6.10)

Let a be a non-constant flat function on E (see Sect.36).

(a) Prove: If the restriction of f to the hyperplane F := a<({0})
attains an extremum at x ∈ F , then x must be given by

x = q − λ
−1

Q (∇a), where λ := a(q)
−1

Q (∇a,∇a)

. (P6.11)

(Hint: Use the Constrained-Extremum Theorem.)

(b) Under what condition does f |F actually attain a maximum or a
minimum at the point x given by (P6.11)?

(7) Let E be a 2-dimensional Euclidean space with translation-space V
and let J ∈ OrthV ∩ SkewV be given (see Problem 2 of Chapt.4). Let
D be an open subset of E and let h : D → V be a vector-field of class
C1.

(a) Prove that

Curlh = −(div(Jh))J. (P6.12)

(b) Assuming that D is convex and that div h = 0, prove that h =
J∇f for some function f : D → R of class C2.

Note: If h is interpreted as the velocity field of a volume-preserving flow, then

div h = 0 is valid and a function f as described in Part (b) is called a “stream-

function” of the flow.
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(8) Let a linear space V, a lineon L ∈ LinV, and u ∈ V be given. Prove:
The only differentiable process h : R → V that satisfies

h• = Lh and h(0) = u (P6.13)

is the one given by

h := (expV ◦(ιL))u. (P6.14)

(Hint: To prove existence, use Prop. 4 of Sect. 612. To prove unique-
ness, use Prop.3 of Sect.612 with the choice D := h ⊗ λ (value-wise),
where λ ∈ V∗ is arbitrary.)

(9) Let a linear space V and a lineon J on V that satisfies J2 = −1V be
given. (There are such J if dimV is even; see Sect.89.)

(a) Show that there are functions c : R → R and d : R → R, of class
C1, such that

expV ◦(ιJ) = c1V + dJ. (P6.15)

(Hint: Apply the result of Problem 8 to the case when V is re-
placed by C := Lsp(1V ,J) ⊂ LinV and when L is replaced by
LeJ ∈ LinC, defined by LeJU = JU for all U ∈ C.)

(b) Show that the functions c and d of Part (a) satisfy

d• = c, c• = −d, c(0) = 1, d(0) = 0, (P6.16)

and

c(t+ s) = c(t)c(s) − d(t)d(s)
d(t+ s) = c(t)d(s) + d(t)c(s)

}

for all s, t ∈ R. (P6.17)

(c) Show that c = cos and d = sin.

Remark: One could, in fact, use Part (a) to define sin and cos.

(10) Let a linear space V and J ∈ LinV satisfying J2 = −1V be given and
put

A := {L ∈ LinV | LJ = −JL}. (P6.18)
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(a) Show that A = Null (∇πJ expV) and conclude that ∇πJ expV fails
to be invertible when dimV > 0. (Hint: Use the Differentiation
Theorem for Lineonic Exponentials, Part (a) of Problem 9, and
Part (d) of Problem 12 of Chap. 1).

(b) Prove that −1V ∈ Bdy Rng expV and hence that expV fails to be
locally invertible near πJ.

(11) Let D be an open subset of a flat space E with translation space V and
let V ′ be a linear space.

(a) Let H : D → Lin(V,V ′) be of class C2. Let x ∈ D and v ∈ V be
given. Note that

∇xCurlH ∈ Lin(V,Lin(V,Lin(V,V ′))) ∼= Lin2(V2,Lin(V,V ′))

and hence

(∇xCurlH)∼ ∈ Lin2(V2,Lin(V,V ′)) ∼= Lin(V,Lin(V,Lin(V,V ′))).

Therefore we have

G := (∇xCurlH)∼v ∈ Lin(V,Lin(V,V ′)) ∼= Lin2(V2,V ′).

Show that

G− G∼ = (∇xCurlH)v. (P6.19)

(Hint: Use the Symmetry Theorem for Second Gradients.)

(b) Let η : D → V∗ be of class C2 and put

W := Curl η : D → Lin(V,V∗) ∼= Lin2(V2,R).

Prove: If h : D → V is of class C1, then

Curl (Wh) = (∇W)h + W∇h + (∇h)⊤W, (P6.20)

where value-wise evaluation and composition are understood.

(12) Let E and E ′ be flat spaces with dim E = dim E ′ ≥ 2, let ϕ : E → E ′ be
a mapping of class C1 and put

C := {x ∈ E | ∇xϕ is not invertible}.
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(a) Show that ϕ>(C) ⊃ Rngϕ ∩ Bdy (Rngϕ).

(b) Prove: If the pre-image under ϕ of every bounded subset of E ′ is
bounded and if Accϕ>(C) = ∅ (see Def.1 of Sect.57), then ϕ is
surjective. (Hint: Use Problem 13 of Chap.5.)

(13) By a complex polynomial p we mean an element of C
(N), i.e. a

sequence in C indexed on N and with finite support (see (07.10)). If
p 6= 0, we define the degree of p by

deg p := maxSupt p = max{k ∈ N | pk 6= 0}.

By the derivative p′ of p we mean the complex polynomial p′ ∈ C
(N)

defined by

(p′)k := (k + 1)pk+1 for all k ∈ N. (P6.21)

The polynomial function p̃ : C → C of p is defined by

p̃(z) :=
∑

k∈N
pkz

k for all z ∈ C. (P6.22)

Let p ∈ (C(N))× be given.

(a) Show that p̃<({0}) is finite and ♯p̃<({0}) ≤ deg p.

(b) Regarding C as a two-dimensional linear space over R, show that
p̃ is of class C2 and that

(∇zp̃)w = p̃′(z)w for all z, w ∈ C. (P6.23)

(c) Prove that p̃ is surjective if deg p > 0. (Hint: Use Part (b) of
Problem 12.)

(d) Show: If deg p > 0, then the equation ? z ∈ C, p̃(z) = 0 has at
least one and no more than deg p solutions.

Note: The assertion of Part (d) is usually called the “Fundamental Theorem of

Algebra”. It is really a theorem of analysis, not algebra, and it is not all that

fundamental.


